
17 

 

International Journal of Renewable Energy Resources 9 (2019) 17-27 

 

A FUZZY DATA ENVELOPMENT ANALYSIS METHOD FOR PERFORMANCE 

EVALUATION OF RENEWABLE FEEDSTOCK SUPPLIERS 

 

R. Babazadeh*, Y. Katebi, M. Shamsi, M. Khalili 
 

Faculty of Engineering, Urmia University, Urmia, West Azerbaijan Province, Iran 

*e-mail: r.babazadeh@urmia.ac.ir 

 

ABSTRACT   

Increasing energy consumption in the world has increased 

the desire to find new ways to generate energy. 

Microalgae is new promising energy source and is 

regarded as a renewable feedstock for biodiesel 

production. Because of containing high content of non-

edible oil, it has attracted the attention of many researchers 

in recent years. In this study, we investigate growth 

indicators of algae cultivation for assessing the 

performance of the candidate places for algae cultivation 

under uncertain condition. We utilize a fuzzy data 

envelopment analysis (FDEA) model for finding the 

optimum locations among the available alternatives. The 

model is a non-radial and non-oriented one and evaluates 

each candidate under uncertainty. An equivalent crisp 

linear programming problem is formulated for solving the 

suggested FDEA model under various levels of 

uncertainty. Then, an actual case study is provided in Iran 

in order to validate the proposed approach. 
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envelopment analysis; Efficiency measurement, 

Uncertainty; renewable feedstock suppliers 

 

1. INTRODUCTION 

Human energy needs are increasing rapidly due to the 

rapid pace of technological advancements. All countries 

need energy for a variety of purposes. It has been proved 

that fuels derived from biomass can be used in the 

transportation system instead of conventional fossil fuel. 

The United States can use its biofuel production capacity 

to meet 30 percent of its fossil fuel needs (Yue et al., 

2014). Various countries use different alternative energy 

sources, including solar power, hydro energy, wind 

energy, tidal energy, geothermal energy, and fuel procured 

from biomass resources. Biomass has the potential to 

provide more than a quarter of the world's energy needs 
(Rawat et al., 2011). More than four-fifths of the energy 

needed by humans comes from fossil fuel sources. These 

resources include natural gas, oil, and coal. This demand 

for energy causes the economies of countries to be 

affected by the availability and price of this resource. It is 

noteworthy that the growth rate of energy demand in the 

last decade is higher than the growth rate of the 

population. (Ong et al., 2011). A variety of biomass can be 

used to produce biofuel. On the other hand, FAO does not 

recommend the use of edible biomass sources as raw material 

for biofuel production. Hence, we have the challenge of 

replacing non-edible feedstock with edible feedstock to 

prevent food crisis growth. Recently, Jatropha and microalgae 

plants are utilized as a feedstock for various biofuel 

production, including biodiesel. The mentioned feedstocks are 

non-edible containing high oil materials, which leads to more 

biodiesel production (Kumar and Sharma, 2011).  

 

Qin et al. (2012) highlighted that the economies depend on 

fossil fuel resources to follow some political, economic, and 

environmental issues. The population of people using biomass 

in traditional ways will increase to 100 million by the year 

2030 (for more details see United Nations Development 

Program (UNDP), 2002). There are a variety of sources for 

biofuel production, such as forest residues, agricultural 

residues, and non-edible energy crops. (see International 

Energy Agency (IEA), 2014 and Intergovernmental Panel on 

Climate Change (IPCC), 2011). Table 1 shows the 

approximate global capacity of bioenergy production. 

 

 

Table 1. Bioenergy generation from different biomass 

 

Resource Technical potential 

Biomass  In 2050 (EJ/yr) 

Production of energy crops on 

surplus agricultural 

0-700 

Production of energy crops in 

marginal land 

<60-110 

Agricultural residues 15-150 

Forest residues 30-150 

muck 5-55 

Organic wastes 5-50 

Total <60->1100 
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According to IPCC (2011), in developed countries, only 5 

percent of total energy demand comes from biomass 

resources. According to World Energy Council (WEC) 

(2011) report, people living in rural areas, also known as 

the villagers, make up more than 50 percent of the 

population, utilize biomass resources, generally to 

produce light and heat for cooking. 

The light reaction process is applied to microalgae oil and 

bio-hydrogen to produce biodiesel (Banerjee et al., 2002). 

One way to deal with decreasing fossil fuel resources, as 

well as environmental issues, is to use renewable fuels 

made from oleaginous microalgae (Chisti, 2007; Hu, 

2014). The high price of fossil fuels, as well as the 

phenomenon of global warming, are other reasons for 

using renewable energy sources (Nagle and Lemke, 1995). 

Various types of oleaginous algae can be converted into 

biofuels, including biodiesel. However, only specific 

microalgae species have been exploited in large-scale. 

These species include Scenedesmus, Chlorella, and 

Nannochloropsis (Hu et al., 2008). 
There are two main reasons for paying attention to 

microalgae; the conversion of microalgae to biodiesel is 

highly efficient, and it has the potential to not only reduce 

air pollution but also to maintain high water quality (Rios 

et al., 2013). Feedstocks such as corn and sunflower can 

be converted into biodiesel. However, the production of 

biodiesel from these agricultural products incurs 

exorbitant costs (Leite et al., 2013). Providing energy 

safety leads to strengthening economies against energy 

price shocks (Brown and Huntington, 2008). CO2 

emissions have extremely increased since the industrial 

revolution (Global Greenhouse Gas Reference Network. - 

Swapnesh and Srivastava), which leads to global warming 

(IPCC 1990). 

Microalgae cannot be consumed as food; hence it has a 

noncompetitive nature to food markets. It can also be 

cultivated using nutrient waste streams. Due to these 

features, the biodiesel produced from microalgae is called 

as a third-generation biofuel (Roberts et al., 2013). The 

energy contained by microalgae oil is almost equivalent to 

80 percent of the energy contained by petroleum, which is 

equal to 35,800 kJ energy (Chisti, 2013). Recent 

researches prove that the annual harvest of algae from 

each is between 15 and 25 tons per hectare (Lam and Lee, 

2012). The amount of lipid extracted from microalgae is 

about 4.5-7.5 metric tons per hectare in one year without 

considering growth conditions optimization (Lam and 

Lee, 2012). This amount is much more than the annual 

amount of lipid extracted from other resources including 

soybeans which is equal to 0.4 metric ton per hectare, palm 

oil which is equal to 3.62 metric ton per hectare, and 

Jatropha which is equal to 4.14 metric ton per hectare 

(Lam and Lee, 2011).  

 

Phosphorus and nitrogen are among the essential 

substances needed in algal cultivation. Mentioned 

nutrients are typically acquired from non-organic and 

organic manure, leading to greenhouse gas (GHG) 

emissions (Lam, 2012). Also, algae cultivation requires a 

considerable amount of energy, water, and carbon dioxide 

(Dalrymple, 2013). Algae growth requires light, mineral 

salts, carbon dioxide, and water. Microalgae cultivation is 

highly efficient at a temperature between 15 to 30 °C 

(Molina et al., 1999). 
Identifying the optimal location for algae cultivation relies 

on several criteria including environmental conditions of 

the cultivation area, economic policies, having sufficient 

information about the geographical conditions of the 

region, and knowing algae growth conditions considering 

its breed. 

Optimal site selection for algae cultivation depends on 

three crucial principles: considering physical and 

geographical conditions for algae cultivation, considering 

the political situation in the region, considering the price 

of land (Maxwell et al., 1985). The yield of algae 

cultivation depends on climatic conditions such as 

irradiance, the amount of available CO2, nutrients 

accessibility, and temperature (Darzins et al. 2010).  

Studies show that the articles have not considered growth 

parameters and uncertainty conditions to determine 

optimal locations where algae growth is ideal except the 

article by Babazadeh et al. (2017). Nevertheless, the 

approach of his study does not meet sufficient capabilities 

in unstable conditions. To complete this shortage, the 

current paper objective is to identify the best places for 

algae cultivation considering uncertain conditions by 

developing a productive fuzzy data envelopment analysis 

(FDEA) model. To implement this method, we define the 

important factors for the cultivation of algae to identify 

appropriate locations.  

The paper continues as follows: Section 2 reviews the 

literature of the previous efforts for performance 

evaluation of the Algae culture places under uncertainty. 

The employed methodology, along with the FDEA model, 

is described in Section 3. The next section provides a 

solution method through the possibilistic programming 

approach. The penultimate section describes the major 

proposals and sustainable development indicators of the 

case study and presents the obtained results by 

implementing our new approach. The results of this study 

are presented in section 6, including the managerial 

concepts of the achieved results. 

 

2. LITERATURE REVIEW 

One of the advantages of algae cultivation in wastewater 

is that it removes nutrients from water and air. Kligerman 

and Bouwer (2015) noted that microalgae production is 

economical through nitrogen and phosphorus excretion. 

Demirbas (2011) claims that microalgae are the only 

feedstock that can be converted into biodiesel. 

Quinn et al. (2013) applied an engineering process model 

to assess the conversion cycle of algae into biofuels. The 

outcomes demonstrate nutrient recycling in the 

microalgae-to-biofuel lifecycle plays an essential role in 
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delivering a desirable net energy ratio (NER) and GHG. It 

should be noted that NER refers to the energy consumed 

over the produced energy in the microalgae biofuel 

production process. 

 

Weyer et al. (2009) determine an absolute upper limit to 

algal production using a theoretical method considering 

physical requirements and assumptions of distinct 

efficiencies. The results show that the maximum amount 

of oil that can be obtained annually from each hectare of 

algae is about 354,000 liters. Babazadeh et al. (2016) 

proposed an FDEA approach (fuzzy data envelopment 

analysis) to specify the optimum sites for JCL cultivation 

under uncertainty conditions. Bray et al. (2014) proposed 

a classical fuzzy DEA model to determine the impacts of 

uncertainly on the productivity of the considered 

transportation services. Zografidou et al. (2015) used a 

multiperiod goal programming method to optimize 

renewable energy production in Greece. The model was 

developed regarding social, ecological, and economic 

criteria. Toloo et al. (2018) proposed an approach that 

integrates both pessimistic and optimistic models into one 

model. The developed model is capable of determining a 

specific condition of each imprecise dual-role factor as 

well as to develop a structure for estimating an optimal 

reallocation model of each dual-role factor among the 

DMUs. Azadeh et al. (2014) applied an integrated fuzzy-

DEA approach to determine optimum locations for wind 

plant installations. They applied principal component 

analysis (PCA) and numerical taxonomy (NT) approach to 

verify the outcomes of the developed DEA model. 

Emrouznejad et al. (2016) applied a multiplicative DEA 

model to rank several prediction methods. Bray et al. 

(2014) presented a feature selection analysis based on the 

fuzzy DEA to assess the impact of uncertainty on the 

efficiency of the transportation system. Wanke et al. 

(2015) developed an integrated FDEA and bootstrapping 

method to evaluate productive efficiency of banks under 

uncertainty. The results show that fuzziness is 

predominant over randomness in identifying missing 

variables and interpreting the results. Azadi et al. (2015) 

proved that by combining the two methods of DEA and 

Enhanced Russel Measure approach, a new model could 

be presented to evaluate the supply chain suppliers in 

terms of efficiency. Egilmez et al. (2016) proposed a new 

FDEA approach that could also include uncertainty 

conditions in the model. They applied this new FDEA 

approach to evaluate and rank food factories in the USA. 

Azadeh et al. (2016) applied an integrated approach, 

including FDEA, with an analytic hierarchy process 

(AHP) to solve a model related to a layout design problem 

with uncertain parameters. Wen et al. (2017) proposed 

three types of uncertain DEA models along with their 

equivalent crisp models that are applicable in uncertain 

environments. Shabanpour et al. (2017) developed a two-

step approach based on goal programming (GP) and 

robust double frontiers DEA to evaluate sustainable 

suppliers where robust optimization model is employed to 

carry out the data uncertainty. Pitchipoo et al. (2018) 

presented a hybrid DEA approach to select suppliers in 

process industries. They investigated chemical processing 

as a case study. 

 

3. METHODOLOGY 

DEA models are mostly used for evaluating the relative 

efficiency of different organizations or production centers 

named decision-making units (DMUs). Data from various 

processes are associated with uncertainty due to 

measurement error, environmental and internal factors. 

Uncertainty theory plays an important role in DEA 

models. Gou (2009) applied a fuzzy DEA model for 

specifying the places of restaurants under imprecise 

conditions. Toloo and Nalchigar (2011) and Toloo (2014) 

studied the supplier’s performance evaluation by the DEA 

method in the presence of uncertain data. Azadeh et al., 

(2011b) suggested utilizing DEA models under 

uncertainty to create reliable results. Azadeh et al. (2014) 

developed a hierarchical FDEA model to rank the best 

locations for power generation systems. Zografidou et al. 

(2016) applied a binary GP model to optimize the Greek 

renewable energy supply chain considering economic, 

social, and environmental aspects. The best network 

structure is selected through applying the DEA model.  

Salahi et al. (2018) developed equivalent models for the 

robust non-radial Russell measure and proposed its 

improved models under uncertainty. The uncertainty sets 

were interval and ellipsoidal.  

The main purpose of this study is assessing the relative 

efficiency of different provinces of Iran for microalgae 

cultivation considering economic, environmental and 

social indicators.  

The steps performed to optimize algae cultivation areas 

are as below: 

Step 1: Identify the sustainability indicators to evaluate the 

performance of cultivation areas. 

Step 2: Divide the sustainability indicators into good and 

bad outputs by using the method of Azadeh et al. (2011a). 

By this manner, the data is not transformed to be 

compatible with the aim of maximizing/minimizing the 

DEA approach.  

Step 3. Use triangular possibility distribution for modeling 

the fuzzy parameters of the DEA model, 

Step 4. Specify the minimum acceptable feasibility degree 

of the constraints and then transform the suggested FDEA 

model to a crisp version for ranking the whole DMUs. 

Step 5. Review and validation of the results of FDEA 

according to the results achieved by the crisp DEA model 

Using Spearman's rank correlation method. 

Step 6. If validation of the FDEA model is confirmed, 

employ the FDEA model to calculate the relative 

efficiency of DMUs at the desired level of α-cuts of DM. 

If not, the utilized FDEA model is not appropriate for 

calculating the performance of DMUs. 
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3.1 The None-Radial DEA Model 

 

DEA is a non-parametric approach based on mathematical 

programming technique for accessing the technical 

efficiency of a set of similar DMUs (Cook et al., 2014). In 

the non-parametric approach there is no need to weigh the 

inputs and outputs, nor to set production function which 

are usual in statistical regression methods. However, there 

are some studies aimed at using parametric methods in 

estimating production function (Lovell and Schmidt, 

1988). The parametric and non-parametric methods could 

be merged in a hybrid approach with better performance 

(Tofallis, 2001) where the DEA firstly identifies the 

efficient DMUs and then a suitable frontier matches it. 

There are radial and non-radial approaches in order to 

project an inefficient DMU on the efficient frontier. The 

aim of a radial model is decreasing the input (increasing 

the output) values, as much as possible, meaning that it 

identifies a set of points with an identical ratio of inputs 

(outputs). However, a non-radial model neglects the radial 

characteristic of inputs and outputs. Färe et al. (2005) 

described in detail the advantage of dividing indicators 

into desirable and undesirable ones. We extend the non-

radial DEA model of Sueyoshi and Goto (2011) which 

divides the outputs into good (desirable) and bad 

(undesirable) outputs. The utilized DEA model integrates 

the good and bad outputs in a unified model.  

The nomenclatures used in the FDEA model could be 

represented as follows. Above the uncertain parameters is 

a tilde (~) mark.  

Sets          

𝑗, 𝑘 
Locations of cultivating algae (DMUs) 𝑗, 𝑘 =
1,… , 𝑛 

𝑟 Good (desirable) outputs 𝑟 = 1,… , 𝑠 

𝑓 Bad (undesirable) outputs 𝑓 = 1,… , ℎ 

Parameters 

�̃�𝑟
𝑔

 Span of good output 𝑟  

�̃�𝑓
𝑏 Span of bad output 𝑓  

�̃�𝑟𝑗 Amount of good output 𝑟 for DMU𝑗 

�̃�𝑓𝑗 Amount of bad output 𝑓 for DMU𝑗 

Variables 

𝜑𝑗
𝑔

 Structural variable of good outputs for DMU𝑗 

𝜑𝑗
𝑏 Structural variable of bad outputs for DMU𝑗 

𝑠𝑟
𝑔

 Surplus variable for good output r 

𝑠𝑓
𝑏 Slack variable for bad output f 

𝛽 Relative efficiency score for DMU   

 

We propose the following non-radial FDEA model to 

assess the relative efficiency of DMU𝑘, the unit under 

evaluation: 

max 𝑧 = ∑ �̃�𝑟
𝑔
𝑠𝑟
𝑔𝑠

𝑟=1 +∑ �̃�𝑓
𝑏𝑠𝑓

𝑏ℎ
𝑓=1   (1) 

s. t.  

∑ �̃�𝑟𝑗𝜑𝑗
𝑔𝑛

𝑗=1 − 𝑠𝑟
𝑔
= �̃�𝑟𝑘 , ∀𝑟 = 1,… , 𝑠  (2) 

∑ 𝜑𝑗
𝑔𝑛

𝑗=1 = 1 ,  (3) 

∑ �̃�𝑓𝑗𝜑𝑗
𝑏𝑛

𝑗=1 + 𝑠𝑓
𝑏 = �̃�𝑓𝑘 , ∀𝑓 = 1,… , ℎ  (4) 

∑ 𝜑𝑗
𝑏𝑛

𝑗=1 = 1 ,  (5) 

𝜑𝑗
𝑔
≥ 0 , 𝜑𝑗

𝑏 ≥ 0 , 𝜑𝑟
𝑔
≥ 0 , 𝜑𝑓

𝑏 ≥ 0. (6) 

The model is solved n times to calculate the relative 

efficiency scores of the whole DMUs.  

In the FDEA model, the structural variables are used to 

connect the good and bad outputs by a convex 

combination. The first term of Equation (2) indicates a 

convex combination of all desirable output vectors 

(
�̃�11
⋮
�̃�𝑠1

) , (
�̃�12
⋮
�̃�𝑠2

) ,… , (
�̃�1𝑛
⋮
�̃�𝑠𝑛

) which is greater than or equal to 

the desirable output vector of DMU under evaluation 

 (
�̃�1𝑘
⋮
�̃�𝑠𝑘

) by taking into account the non-negative surplus 

variable vector (
𝑠1
𝑔

⋮
𝑠𝑠
𝑔
). Whereas, the first term of Equation 

(4) designates a convex combination of all undesirable 

output vectors (
�̃�11
⋮
�̃�ℎ1

) ,(
�̃�12
⋮
�̃�ℎ2

) ,… , (
�̃�1𝑛
⋮
�̃�ℎ𝑛

) which is at most 

(
�̃�1𝑘
⋮
𝑏ℎ𝑘

) by considering the non-negative slack variable 

vector (
𝑠1
𝑏

⋮
𝑠ℎ
𝑏
). Note that the convex-combination 

conditions are hold by Equations (3) and (5) along with 

the non-negativity conditions in Equation (6). We define 

the fuzzy coefficients of the objective function (1) as 

below:  

 

�̃�𝑟
𝑔
= 1/[(1 + 𝑠 + ℎ)[max{�̃�𝑟𝑗|𝑗 = 1,… , 𝑛}

− min{�̃�𝑟𝑗|𝑗 = 1,… , 𝑛}]] 
(7) 

�̃�𝑓
𝑏 = 1/[(1 + 𝑠 + ℎ)[max{�̃�𝑓𝑗|𝑗 = 1,… , 𝑛}

− min{�̃�𝑓𝑗|𝑗 = 1,… , 𝑛}]] 
(8) 

We will later expand Equations (7) and (8) to their 

equivalent crisp forms (see Equations (39) and (40)). 

Since there is no input in the model, we consider a dummy 

input for all DMUs. In Equations (7) and (8), 1 stands for 

the dummy input. 
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The relative efficiency score of DMU𝑘 is measured by 

equation (9). 

𝛽 = 1 − (∑ �̃�𝑟
𝑔
𝑠𝑟
𝑔∗𝑠

𝑟=1 + ∑ �̃�𝑓
𝑏𝑠𝑓

𝑏∗𝑠
𝑓=1 )  (9) 

The star sign “*” shows the optimality condition. 

Since the good and bad outputs of the FDEA model are 

uncertain, it is not possible to solve this model by linear 

programming (LP) techniques. To tackle this issue, we 

transfer the model to an equivalent crisp model. Triangular 

possibility distribution is used to model the distribution of 

fuzzy good and bad outputs. To make the triangular 

possibility distribution, the limited historical data and 

knowledge of experts are utilized. The next section 

employs some recent methods in possibilistic 

programming approach to develop an appropriate 

methodology for dealing with ambiguousness in the 

FDEA model. 

 

4. THE SOLVING PROCEDURE 

 

This section transfers the suggested FDEA model to an 

equivalent crisp model. Toward this end, we utilize the 

possibilistic programming method to deal with the fuzzy 

coefficients in objective function and constraints. Some 

methods such as flexible programming (Dubois et al., 

2003) and compromise programming (Parra et al., 2005) 

are used to convert a possibilistic programming model into 

its equivalent crisp model. Nevertheless, the method 

proposed by Jiménez et al. (2007) is employed in this 

paper. The advantages of this method include: (i) The 

method is efficient from computational complexity point 

of view; (ii) Utilizing the ranking method developed by 

Jiménez (1996), it could be used to construct different 

linear and non-linear membership functions; and (iii) the 

method uses expected interval (EI) along with expected 

value (EV) of fuzzy numbers to create the equivalent crisp 

model. For more details, see Pishvaee and Torabi (2010). 

Now, we describe the required principles to transform the 

FDEA model to its equivalent crisp model. Assume that �̃� 

is a triangular fuzzy number which its possibility 

distribution is determined by three points i.e.,�̃� =
(𝑐𝑝, 𝑐𝑚, 𝑐𝑜), where 𝑐𝑚 , 𝑐𝑝, and 𝑐𝑜 represent the most 

possible, most pessimistic, and most optimistic values, 

respectively. The membership function of �̃� is denoted by 

𝜇𝑐̃ which is a continuous function from ℝ to [0,1] as 

below: 

𝜇𝑐̃

=

{
  
 

  
 
0 if 𝑥 ∈ (−∞, 𝑐𝑝] 

𝑓𝑐(𝑥) =
𝑥 − 𝑐𝑝

𝑐𝑚 − 𝑐𝑝 
if 𝑥 ∈ [𝑐𝑝, 𝑐𝑚]

1 if 𝑥 = 𝑐𝑚

𝑔𝑐(𝑥) =
𝑐𝑜 − 𝑥

𝑐𝑜 − 𝑐𝑚
if 𝑥 ∈ [𝑐𝑚 , 𝑐𝑜]

0 if 𝑥 ∈ [𝑐𝑝, +∞)

              
(10

) 

 

The 𝛼-cut set of fuzzy number �̃� can be defined as 𝑐𝛼 =
{𝑥 ∈ Ω|𝜇𝑐̃(𝑥) ≥ 𝛼} where Ω is the universe set. Since 𝜇𝑐̃ 

is continuous, the 𝛼-cut sets are closed and bounded and 

can be presented as 𝑐𝛼 = [𝑓𝑐
−1(𝛼), 𝑔𝑐

−1(𝛼)]. According to,  

The EI and EV of fuzzy number �̃� can be written as 

follows, respectively: (see Heilpern, 1992, and Jimenez, 

1996): 

𝐸𝐼(�̃�)[𝐸1
𝑐 , 𝐸2

𝑐]

= [∫ 𝑓𝑐
−1(𝑥)𝑑𝑥

1

0

, ∫ 𝑔𝑐
−1(𝑥)𝑑𝑥

1

0

] 

= [
1

2
(𝑐𝑝 + 𝑐𝑚),

1

2
(𝑐𝑚 + 𝑐𝑜)]  

(11) 

𝐸𝑉(�̃�) =
𝐸1
𝑐+𝐸2

𝑐

2
=

𝑐𝑝+2𝑐𝑚+𝑐𝑜

4
  (12) 

Note that the EV is the midpoint of the EI.  

Let �̃� and �̃� be two fuzzy numbers. Dubois and Prade 

(1978) applied the following interval in order to use the 

Zadeh’s (1978) minimum extension principle for 

aggregating �̃� and �̃�:  

[𝑓𝜆𝑎+𝛾𝑏
−1 (𝑥), 𝑔𝜆𝑎+𝛾𝑏

−1 (𝑥)]

= [𝜆𝑓𝑎
−1(𝑥)

+ 𝛾𝑓𝑏
−1(𝑥), 𝜆𝑔𝑎

−1(𝑥)
+ 𝛾𝑔𝑏

−1(𝑥)] 

(13) 

Accordingly, Jiménez et al. (2007) suggested the 

followings EI and EV: 

𝐸𝐼(𝜆�̃� + 𝛾�̃�) = 𝜆𝐸𝐼(�̃�) + 𝛾𝐸𝐼(�̃�) (14) 

𝐸𝑉(𝜆�̃� + 𝛾�̃�) = 𝜆𝐸𝑉(�̃�) + 𝛾𝐸𝑉(�̃�) (15) 

Furthermore, the following function verifies how much �̃� 

is bigger than �̃� (see Jiménez (1996)): 

𝜇𝑀(�̃�, �̃�) =

{
 

 
0 if 𝐸2

𝑎 − 𝐸1
𝑏 < 0

𝐸2
𝑎−𝐸1

𝑏

𝐸2
𝑎−𝐸1

𝑏−(𝐸1
𝑎−𝐸2

𝑏)
 if 0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏 , 𝐸2

𝑎 − 𝐸1
𝑏]

1 if 𝐸1
𝑎 − 𝐸2

𝑏 > 0

  (16) 

where [𝐸2
𝑎 − 𝐸1

𝑎] and [𝐸2
𝑏 − 𝐸1

𝑏] are the EIs of fuzzy 

numbers �̃� and �̃�, respectively. If 𝜇𝑀(�̃�, �̃�) ≥ 𝛼, then �̃� is 

greater than or equal to �̃� , at least at level 𝛼 which is 

illustrated by �̃� ≥𝛼 𝑏 ̃. 

Moreover, �̃� is indifferent (equal) to �̃� in degree of 𝛼 if the 

inequality (17) is met at the same time (Parra et al., 2005): 

�̃� ≈𝛼 𝑏 ̃ (17) 

Inequality (17) can be rewritten as follows: 

𝛼

2
≤ 𝜇𝑀(�̃�, �̃�) ≤ 1 −

𝛼

2
  (18) 

 

Now, we employ the aforementioned concepts to develop 

an auxiliary crisp model for the following general 

possibilistic programming model: 

min 𝑧 = �̃�𝒙  
s. t.  
�̃�𝑖𝒙 ≥ �̃�𝑖 𝑖 = 1,… , 𝑙

�̃�𝑖𝒙 = �̃�𝑖 𝑖 = 𝑙 + 1,… ,𝑚
𝒙 ≥ 𝟎𝑛  

 (19) 
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where �̃� = (�̃�1, … , �̃�𝑛) is the fuzzy cost coefficients vector, 

�̃�𝑖 = (�̃�𝑖1, … , �̃�𝑖𝑛)  is 𝑖𝑡ℎ row vector of the constraint 

matrix for 𝑖 = 1,… ,𝑚,  𝒙 = (𝑥1, … , 𝑥𝑛) is decision 

variables vector, and 𝟎𝑛 is the origin in the 𝑛 −
dimensional (real) Euclidean space, i.e, 𝟎𝑛 = (0,… ,0) ∈
ℝ𝑛.  

A decision variables vector 𝒙 ∈ ℝ𝑛 is feasible in degree of 

𝛼  (Jiménez et al., 2007) if 

min{𝜇𝑀(�̃�𝑖𝒙, �̃�𝑖)|𝑖 = 1,… ,𝑚 } = 𝛼.  In other words, 𝒙 is 

𝛼-feasible when: 

�̃�𝑖𝒙 ≥ 𝛼�̃�𝑖  ,    𝑖 = 1, … , 𝑙      (20) 

which leads to (see formula 16):  

𝐸2
𝒂𝑖𝒙 − 𝐸1

𝑏𝑖

𝐸2
𝑎𝑖𝑥 − 𝐸1

𝑏𝑖 − (𝐸1
𝒂𝑖𝒙 − 𝐸2

𝑏𝑖)
≥ 𝛼,    𝑖 = 1, … , 𝑙 (21) 

or equivalently (see 15): 

[(1 − 𝛼)𝐸2
𝑎𝑖 + 𝛼𝐸1

𝑎𝑖]𝑥 

≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖 ,   𝑖

= 1, … , 𝑙   

(22) 

 

Now, we extend the above procedure for fuzzy equalities. 

When two fuzzy numbers �̃�𝑖𝒙 and �̃�𝑖 are 𝛼 −equal: 

�̃�𝑖𝒙 ≈𝛼 �̃�𝑖 ,           𝑖 = 𝑙 + 1,… ,𝑚 (23) 

we have 

𝛼

2
≤

𝐸2
𝒂𝑖𝒙 − 𝐸1

𝑏𝑖

𝐸2
𝒂𝑖𝒙 − 𝐸1

𝑏𝑖 − (𝐸1
𝒂𝑖𝒙 − 𝐸2

𝑏𝑖)
≤ 1 −

𝛼

2
,      𝑖

= 𝑙 + 1,… ,𝑚 

(24) 

 From (15), the above inequalities are rewritten as follows: 

[(1 −
𝛼

2
)𝐸2

𝒂𝑖 +
𝛼

2
𝐸1
𝑎𝑖] 𝒙

≥
𝛼

2
𝐸2
𝑏𝑖

+ (1 −
𝛼

2
)
𝛼

2
𝐸1
𝑏𝑖 ,        𝑖

= 𝑙 + 1,… ,𝑚 

(25) 

[
𝛼

2
𝐸2
𝑎𝑖 + (1 −

𝛼

2
)𝐸1

𝑎𝑖] 𝒙 

≤ (1 −
𝛼

2
)𝐸2

𝑏𝑖

+
𝛼

2
𝐸1
𝑏𝑖 ,           𝑖

= 𝑙 + 1,… ,𝑚 

(26) 

The following definition is used to convert the fuzzy 

objective function of model (19) into its equivalent crisp 

model (Jiménez et al., 2007). A feasible vector like 𝒙0 is 

an 𝛼-acceptable optimal solution for model (19) if and 

only if for all feasible decisions vectors x we have 

�̃�𝒙 ≥1
2
�̃�𝒙0 (27) 

or (see 22)  

𝐸2
𝒄𝒙 − 𝐸1

𝒄𝒙

2
≥
𝐸2
𝒄𝒙0 − 𝐸1

𝒄𝒙0

2
 (28) 

 

The feasible solution 𝒙 will be hold in constraints (29)-

(31):  

�̃�𝑖𝒙 ≥ 𝛼�̃�𝑖 ,           𝑖 = 1, … , 𝑙   (29) 

�̃�𝑖𝒙 ≈𝛼 �̃�𝑖 ,           𝑖 = 𝑙 + 1,… ,𝑚 (30) 

𝒙 ≥ 𝟎𝑛 (31) 

If the vector 𝒙0  is an optimal solution for the problem 

(32), it is an optimal α-acceptable solution for the model 

(19). 

 

min 𝑧 = 𝐸𝑉(�̃�)𝒙   

s. t.  

[(1 −
𝛼

2
)𝐸2

𝒂𝑖 + 𝛼𝐸1
𝒂𝑖] 𝒙

≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖 ,  

𝑖 = 1,… , 𝑙  

(32) 

[(1 −
𝛼

2
)𝐸2

𝒂𝑖 +
𝛼

2
𝐸1
𝒂𝑖] 𝒙

≥
𝛼

2
𝐸2
𝑏𝑖 + (1 −

𝛼

2
)
𝛼

2
𝐸1
𝑏𝑖 , 

𝑖 = 𝑙 + 1,… ,𝑚  

 

[
𝛼

2
𝐸2
𝒂𝑖 + (1 −

𝛼

2
)𝐸1

𝒂𝑖] 𝒙

≤ (1 −
𝛼

2
)𝐸2

𝑏𝑖 +
𝛼

2
𝐸1
𝑏𝑖 ,  

𝑖 = 𝑙 + 1,… ,𝑚  

 

𝒙 ≥ 𝟎𝑛  

Equations (33) and (34) calculate the maximum and 

minimum of 𝑛 fuzzy numbers �̃�1, … , �̃�𝑛 as follows: 

max(�̃�1, … , �̃�𝑛) (𝑧)
= sup𝑧=max (𝑥1,…,𝑥𝑛)  min(�̃�1(𝑥1) , … , �̃�𝑛(𝑥𝑛))  ,

∀𝑧 ∈ 𝑅  

(33

) 

min(�̃�1, … , �̃�𝑛) (𝑧)
= sup𝑧=min (𝑥1,…,𝑥𝑛)   min(�̃�1(𝑥1) , … , �̃�𝑛(𝑥𝑛))  ,         ∀𝑧

∈ 𝑅 

(34

) 

For more details about equations (33) and (34), we refer 

the interested readers to Hong and Kim (2006). 

According to (33) and (34), it is deduced that: 

max{�̃�𝑟𝑗} = �̃�𝑟,𝑚𝑎𝑥 = (𝑔𝑟,𝑚𝑎𝑥
𝑝

, 𝑔𝑟,𝑚𝑎𝑥
𝑚 , 𝑔𝑟,𝑚𝑎𝑥

𝑜 ) (35) 

min{�̃�𝑟𝑗}  = �̃�𝑟,𝑚𝑖𝑛 = (𝑔𝑟,𝑚𝑖𝑛
𝑝

, 𝑔𝑟,𝑚𝑖𝑛
𝑚 , 𝑔𝑟,𝑚𝑖𝑛

𝑜 ) (36) 

max{�̃�𝑓𝑗} = �̃�𝑓,𝑚𝑎𝑥 = (𝑏𝑓,𝑚𝑎𝑥
𝑝

, 𝑏𝑓,𝑚𝑎𝑥
𝑚 , 𝑏𝑓,𝑚𝑎𝑥

𝑜 ) (37) 

min{�̃�𝑓𝑗} = �̃�𝑓,𝑚𝑖𝑛 = (𝑏𝑓,𝑚𝑖𝑛
𝑝

, 𝑏𝑓,𝑚𝑖𝑛
𝑚 , 𝑏𝑓,𝑚𝑖𝑛

𝑜 ) (38) 

Consequently, we define �̃�𝑟
𝑔

 and �̃�𝑓
𝑏 as bellow: 

�̃�𝑟
𝑔
= (𝑅𝑟

𝑔𝑝
, 𝑅𝑟

𝑔𝑚
, 𝑅𝑟

𝑔𝑜
) =

1

(1+𝑠+ℎ)
(

1

𝑔𝑟,𝑚𝑎𝑥
𝑜 −𝑔𝑟,𝑚𝑖𝑛

𝑜 ,
1

𝑔𝑟,𝑚𝑎𝑥
𝑚 −𝑔𝑟,𝑚𝑖𝑛

𝑚 ,
1

𝑔𝑟,𝑚𝑎𝑥
𝑝

−𝑔
𝑟,𝑚𝑖𝑛
𝑝 )  (39) 

�̃�𝑓
𝑏 = (𝑅𝑓

𝑏𝑝
, 𝑅𝑓

𝑏𝑚 , 𝑅𝑓
𝑏𝑜) =

1

(1+𝑠+ℎ)
(

1

𝑏𝑓,𝑚𝑎𝑥
𝑜 −𝑏𝑓,𝑚𝑖𝑛

𝑜 ,
1

𝑏𝑓,𝑚𝑎𝑥
𝑚 −𝑏𝑓,𝑚𝑖𝑛

𝑚 ,
1

𝑏
𝑓,𝑚𝑎𝑥
𝑝

−𝑏
𝑓,𝑚𝑖𝑛
𝑝 )  (40) 

All in all, we formulate the following crisp model which 

is equivalent to the FDEA model (1-6): 
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max 𝑧 = ∑ (
𝑅𝑟
𝑔𝑝
+2𝑅𝑟

𝑔𝑚
+𝑅𝑟

𝑔𝑜

4

𝑠
𝑟=1 )𝑑𝑟

𝑔
+

∑ (
𝑅𝑓
𝑏𝑝
+2𝑅𝑓

𝑏𝑚+𝑅𝑓
𝑏𝑜

4
)𝑑𝑓

𝑏ℎ
𝑓=1   

(41) 

s. t.  

∑ [(1 −
𝛼

2
) (

𝑔𝑟𝑗
𝑚+𝑔𝑟𝑗

𝑜

2
) + (

𝛼

2
) (

𝑔𝑟𝑗
𝑝
+𝑔𝑟𝑗

𝑚

2
)]𝑛

𝑗=1 𝜆𝑗
𝑔
−

𝑑𝑟
𝑔
≥ (

𝛼

2
) (

𝑔𝑟𝑘
𝑚+𝑔𝑟𝑘

𝑜

2
) + (1 −

𝛼

2
) (

𝑔𝑟𝑘
𝑝
+𝑔𝑟𝑘

𝑚

2
),   ∀𝑟  

(42) 

∑ [(
𝛼

2
) (

𝑔𝑟𝑗
𝑚+𝑔𝑟𝑗

𝑜

2
) + (1 −

𝛼

2
) (

𝑔𝑟𝑗
𝑝
+𝑔𝑟𝑗

𝑚

2
)]𝑛

𝑗=1 𝜆𝑗
𝑔
−

𝑑𝑟
𝑔
≤ (1 −

𝛼

2
) (

𝑔𝑟𝑘
𝑚+𝑔𝑟𝑘

𝑜

2
) + (

𝛼

2
) (

𝑔𝑟𝑘
𝑝
+𝑔𝑟𝑘

𝑚

2
),   ∀𝑟  

(43) 

∑ 𝜆𝑗
𝑔𝑛

𝑗=1 = 1 ,  (44) 

∑ [(1 −
𝛼

2
) (

𝑏𝑓𝑗
𝑚+𝑏𝑓𝑗

𝑜

2
) + (

𝛼

2
) (

𝑏𝑓𝑗
𝑝
+𝑏𝑓𝑗

𝑚

2
)]𝑛

𝑗=1 𝜆𝑗
𝑏 −

𝑑𝑓
𝑏 ≥ (

𝛼

2
) (

𝑏𝑓𝑘
𝑚+𝑏𝑓𝑘

𝑜

2
) + (1 −

𝛼

2
) (

𝑏𝑓𝑘
𝑝
+𝑏𝑓𝑘

𝑚

2
),   ∀𝑓  

(45) 

∑ [(
𝛼

2
) (

𝑏𝑓𝑗
𝑚+𝑏𝑓𝑗

𝑜

2
) + (1 −

𝛼

2
) (

𝑏𝑓𝑗
𝑝
+𝑏𝑓𝑗

𝑚

2
)]𝑛

𝑗=1 𝜆𝑗
𝑏 −

𝑑𝑓
𝑏 ≤ (1 −

𝛼

2
) (

𝑏𝑓𝑘
𝑚+𝑏𝑓𝑘

𝑜

2
) + (

𝛼

2
) (

𝑏𝑓𝑘
𝑝
+𝑏𝑓𝑘

𝑚

2
),   ∀𝑓  

(46) 

∑ 𝜆𝑗
𝑏𝑛

𝑗=1 = 1 ,  (47) 

λ𝑗
𝑔
≥ 0 , 𝜆𝑗

𝑏 ≥ 0 , 𝜆𝑟
𝑔
≥ 0 , 𝜆𝑓

𝑏 ≥ 0. (48) 

 

Here, there are 2(𝑠 + ℎ + 1) constraints with 2𝑛 + 𝑠 + ℎ 

non-negative decision variables. The above equivalent 

crisp form of the FDEA model integrates good and bad 

indicators in a unified model and could efficiently deal 

with the fuzziness of parameters. The relative efficiency 

score for each DMU is achieved through subtracting the 

objective function value from unit.  

 

5. RESULTS AND DISCUSSION 

 

There are various types of biomass resources which can be 

used to produce biofuel such as sunflower, sorghum, 

Jatropha, sugar beet, and Algae. It should be noted that the 

ecological condition and refinery facilities in Iran are 

suitable for biofuel production from alga. Also, 

availability of high seas in Iran facilitates the possibility 

of cultivation of algae. 

 

In this study, we use economic, social, and environmental 

factors which are triple lines of sustainable development 

for investigating the appropriateness of different 

provinces in Iran for algae cultivation. We measured nine 

effective indicators including six desirable outputs, 

annual rainfall (�̃�1), solar radiation (�̃�2), amount of 

water resources (�̃�3), annual average of mean daily 

temperature (�̃�4), amount of wastewater (�̃�5) and 

Population (�̃�6) which should be maximized along with 

three undesirable outputs criteria including cultivation 

cost per hectare (�̃�1), distance to refineries (�̃�2) and 

human development index (�̃�3), which have been 

produced but should be minimized. The used indicators 

have been presented and discussed by Babazadeh et al. 

(2020). There are 30 DMUs including different provinces 

of Iran for microalgae cultivation. The northern and 

southern provinces of Iran have excellent conditions such 

as more water, good humid and high temperature to be 

utilized for microalgae cultivation. Meanwhile, other 

provinces of Iran have good conditions for algae 

cultivation. The aim of this paper is to determine the best 

locations according to economic, environmental and 

social factors. As now, successful cultivation of microalga 

has been done in some provinces of Iran such as Golestan, 

Gilan, Bushehr, and Hormozgan. 

 

5.1 The Results of the FDEA Model 

We apply the FDEA model on the data driven from a real 

case study in Iran. Table 2 summarizes the UNEs and 

ranks obtained for various amounts of α-cut levels. GAMS 

(2018) optimization software is employed to solve the 

FDEA model.  

 

As can be adapted from the table, Hormozgan 

(DMU28) achieved the best ranking score for 

𝛼 ∈ {0.4, 0.7, 0.9, 1} while it is ranked as the 4th 

of the ranking for 𝛼 ∈ {0, 0.1}. As a matter of 

fact, Kohgiluyeh and Boyer-Ahmad (DMU22) is 

the 1st, 2nd, and 3rd of the ranking for 𝛼 ∈
{0, 0.1}, 𝛼 ∈ {0.4}, and 𝛼 ∈ {0.7, 0.9,1}, 
respectively. Moreover, Khorasan Sh. (DMU11) 

is ranked as the 30th position for all the employed 

𝛼, i.e 𝛼 ∈ {0, 0.1, 0.4, 0.7, 0.9, 1}, which shows 

an identical ranking score for various 𝛼. In 

contrast, the maximum variation in ranking 

scores for different 𝛼 is associated to Khorasan 

R. (DMU10) and Yazd (DMU30). The former 

province is ranked as the 8th position for 𝛼 = 1 

while it possesses 25th ranking score with 𝛼 ∈
{0, 0.1, 0.4}. The latter one is recognized as the 

14th and 21st positions for 𝛼 = 1 and 𝛼 = 0, 

respectively. The achieved results are consistent 

with real experiences so that according to the 

studies of Iran Fisheries Organization, the 

Hormozgan has been recognized the most 

suitable location for microalgae cultivation. At 

the other hand, since the water availability is 

crucial for successful cultivation of microalgae, 

the FDEA model has eliminated the provinces 

dealing with water shortage. 
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Table 2. The results of the model for various amounts of α 

 

No 

DMUs 𝛼 = 0 𝛼 = 0.1 𝛼 = 0.4 𝛼 = 0.7 𝛼 = 0.9 𝛼 = 1 

(Provinces) UNE Rank UNE Rank UNE Rank UNE Rank UNE Rank UNE Rank 

1 Azerbaijan Sh. 0.61 20 0.61 21 0.63 22 0.65 23 0.67 23 0.68 23 

2 Azerbaijan Gh. 0.62 17 0.62 19 0.64 20 0.66 20 0.68 21 0.68 22 

3 Ardabil 0.61 19 0.62 18 0.64 19 0.67 18 0.68 20 0.69 21 

4 Isfahan 0.63 16 0.64 16 0.65 17 0.69 17 0.74 16 0.76 15 

5 Ilam 0.65 14 0.66 14 0.72 13 0.80 10 0.85 10 0.88 9 

6 Bushehr 0.74 11 0.75 10 0.80 9 0.84 9 0.88 8 0.89 8 

7 Tehran 0.84 5 0.84 5 0.86 6 0.88 6 0.89 7 0.90 7 

8 Chahar Mahaal 

and Bakhtiari 

0.74 10 0.75 9 0.77 10 0.79 12 0.81 12 0.82 12 

9 Khorasan J. 0.52 27 0.53 27 0.56 27 0.60 26 0.64 26 0.66 25 

10 Khorasan R. 0.59 25 0.60 25 0.62 25 0.65 22 0.68 19 0.70 18 

11 Khorasan Sh. 0.50 30 0.51 30 0.53 30 0.55 30 0.56 30 0.57 30 

12 Khozestan 0.76 8 0.77 8 0.80 8 0.84 8 0.86 9 0.87 10 

13 Zanjan 0.53 26 0.54 26 0.56 26 0.58 27 0.59 28 0.60 28 

14 Semnan 0.50 29 0.51 29 0.53 29 0.56 28 0.59 27 0.60 27 

15 Sistan va 

Balochestan 

0.78 7 0.80 7 0.83 7 0.87 7 0.89 6 0.91 6 

16 Fars 0.80 6 0.82 6 0.87 5 0.93 2 0.96 2 0.98 2 

17 Gazvin 0.50 28 0.51 28 0.53 28 0.55 29 0.57 29 0.57 29 

18 Gom 0.60 22 0.60 24 0.63 21 0.65 21 0.67 22 0.69 20 

19 kordestan 0.64 15 0.65 15 0.67 15 0.70 16 0.71 17 0.72 17 

20 Kerman 0.66 13 0.67 13 0.73 12 0.79 11 0.82 11 0.85 11 

21 Kermanshah 0.74 9 0.74 11 0.76 11 0.78 13 0.79 13 0.79 13 

22 Kohgiluyeh and 

Boyer-Ahmad 

0.87 1 0.88 1 0.90 2 0.92 3 0.93 3 0.94 3 

23 Golestan 0.61 18 0.62 17 0.64 18 0.66 19 0.68 18 0.69 19 

24 Gilan 0.86 3 0.87 3 0.89 4 0.91 4 0.92 4 0.93 4 

25 Lorestan 0.68 12 0.69 12 0.71 14 0.73 14 0.75 14 0.75 16 

26 Mazandaran 0.86 2 0.87 2 0.89 3 0.90 5 0.91 5 0.92 5 

27 Markazi 0.59 24 0.60 23 0.62 24 0.63 25 0.64 25 0.65 26 

28 Hormozgan 0.85 4 0.86 4 0.90 1 0.93 1 0.96 1 0.98 1 

29 Hamadan 0.59 23 0.60 22 0.62 23 0.64 24 0.66 24 0.67 24 

30 Yazd 0.60 21 0.61 20 0.66 16 0.71 15 0.74 15 0.76 14 

 

To apply the FDEA model in real-world practices, it 

should firstly be verified and validated. The spearman’s 

rank correlation method is an efficient method for 

verifying and validation of the DEA models (Sheskin, 

2000). The ranks achieved by the FDEA and DEA models 

are assessed in the terms of positive correlation through 

calculating the measure 𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2−1)
. Here, 𝑑𝑖 is 

difference between the ranks achieved from each model 

and 𝑛 indicates the total number of DMUs. Table 3 shows 

the Spearman’s rank correlation coefficient for different 

values of α-cuts. A significant correlation could be 

observed between the ranks provided by the FDEA and 

DEA models. 

 

Table 3. Positive correlation between FDEA and DEA 

models 

 α = 0.1 α = 0.4 α = 0.7 α = 0.9 

Correlation  0.9484 0.9646 0.9851 0.9931 

 

6. CONCLUSION 

Energy plays a fundamental role in human life. 

Considering the population growth, more food and energy 

will be needed to ensure an adequate standard of living for 

all people around the world. Energy demand has been 

significantly growing every year while the energy 

resources remain constant. The carbon dioxide emitted 

due to fossil fuels combustion is increasing rapidly which 

causes irreversible changes to earth like global warming, 

air pollution, climate change, and acid rain and its effects 
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on the agricultural industry and human health. Due to the 

mentioned reasons, today countries are more willing to use 

renewable energies including biodiesel. Biodiesel 

generation from non-food raw materials such as algae has 

become very important in recent years. Determining the 

optimal areas for algae cultivation reduces the production 

costs of algae oil and leads to greater profitability of 

biodiesel supply chains. This paper investigates the 

growth indicators of algae cultivation to evaluate the 

efficiency of the candidate areas under epistemic 

condition. To do so, we extended an FDEA model with the 

aim of measuring the efficiency scores of locations under 

uncertainty. The places with high rank are appropriate 

ones in order to calculate algae. A real case study is 

conducted in Iran to verify and validate the results of the 

FDEA and DEA models. The obtained results pointed out 

that the suggested FDEA model can be assistance to the 

decision makers for optimizing the cultivation locations of 

algae for various levels of acceptable uncertainty (α-cut). 

For the future researches, one can extend our approach to 

compare its results with other approaches such as 

stochastic or robust DEA models. 
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