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ABSTRACT 

 

Glaucoma and Stargardt’s, an inherited disease predominantly affect the retinal portion of the eye. The diagnosis of 

Glaucoma in a fundus image is an arduous, time consuming process. There were many research works carried out to 

detect early stages of Glaucoma and Stargardt’s disease. However, the accuracy, diagnostic time and performance were 

not improved. To resolve the above said problems, a computational method called Deep Neural Perona–Malik Diffusive 

Mean Shift Mode Seeking Segmented Image Classification (DNP-MDMSMSIC) is introduced for the early detection of 

Glaucoma and Stargardt’s disease with retinal fundus images. The DNP-MDMSMSIC method comprises diverse types 

of layers that support to identify early detection of disease with improved accuracy and less time. Process as explained; 

initially, numerous qualified retinal images are given as input to the input layer. These input images are transmitted 

further to the hidden layer 1 to perform image pre-processing. In DNP-MDMSMSIC, Space-Variant Perona–Malik 

Diffusive Image Preprocessing is carried out to decrease the noise from input image without removing contents like edges, 

lines, etc., for image interpretation with a higher peak signal-to-noise ratio. This preprocessed image is further processed 

in the hidden layer 2 where the feature extraction process is performed to extract features like color, texture, and intensity 

with a higher degree of accuracy. Based on the extracted features, an input feature image gets segmented in hidden layer 

3.  Mean Shift Mode Seeking Segmentation algorithm is employed to segment the pixels in image space with corresponding 

feature space points. Then the segmented images are given to the output layer to perform retinal fundus image 

classification using Bregman Divergence Function. During the image classification, the distance between two segmented 

regions (i.e., testing image region of particular class and training image region) with convex is measured. In this way, 

the retinal fundus images get classified with higher accuracy. Experimental evaluation is performed by considering the 

metrics such as peak signal-to-noise, disease detection accuracy, disease detection time, and error rate corresponding to 

the number of retina fundus images and image size. DNP-MDMSMSIC method is designed to detect Glaucoma and 

Stargardt’s disease at an earlier stage with higher accuracy by 8% and less time by 20% with aid of ACRIMA database. 

 

Keywords: Glaucoma detection, Stargardt’s disease, retinal fundus image, Space-variant Perona–Malik diffusive, 

Feature extraction, Mean shift mode seeking, pixel segmentation, Bregman divergence function, Classification. 

 

1.0 INTRODUCTION  

 

Glaucoma and Stargardt’s disease are considered as one of critical eye diseases which could lead to complete blindness. 

Glaucoma and Stargardt’s disease are estimated to affect 79.6 million people by 2020. No symptoms reflected in early 

stages, however gradually over the period of time affect the irreversible vision loss by damaging the optic nerve. 

Glaucoma, chronic eye disease affects the optic nerve and neural fiber bundle. The optic nerve performs the function of 

visual information transfer from the eye to the brain. [8]. Glaucoma symptoms are severe eye pain, nausea, vomiting, 

redness in your eye, sudden vision disturbances, seeing colored rings around lights, and sudden blurred vision. 

 

Glaucoma is a progressive eye disease due to the increase in intraocular pressure. Accurate early detection may prevent 

vision loss [8]. Stargardt’s disease is a general kind of hereditary macular dystrophy in the child and is one of the most 

genetic disorders which cause macular degeneration. Stargardt’s disease is variable and provides low loss of central vision 



Deep Perona–Malik Diffusive Mean Shift Image Classification for Early Glaucoma  

and Stargardt Disease Detection. pp., 14-39 

 

15 

Malaysian Journal of Computer Science, Vol. 36 (1), 2023 

in both eyes. The disease causes progressive damage or degeneration of the macula, which is tiny area in the center of the 

retina, responsible for clear, sharp and Straight-ahead vision [24]. The detection of these diseases at an earlier stage is 

mandatory for preventing blindness. The earlier identification of glaucoma saves the patient from blindness. Segmentation 

and classification methods are important to determine the eye disease at a prior stage [8]. 

 

The eye diseases such as Glaucoma and Stargardt’s disease are used to visualize optic disc, retina, and blood vessels. In 

addition, retinal blood vessel pattern is inimitable for humans. It is a very stable pattern in biometric determination. 

The optic disc is the initial stage of the optic nerve and is caused by damage to thin blood vessels. The narrowed blood 

vessel minimizes the circulation of blood to the connected body element. The tiny blood vessels in the back of the eye 

are deteriorated and leak fluid into and under the retina. This causes the retina to enlarge leads to blurring or distorting of 

vision, abnormal capabilities causes breakage and leads to bleeding. So, the novel deep learning classification method is 

used to improve the time complexity and accuracy for automatically detecting Glaucoma and Stargardt’s disease in the 

early stage. The example of normal fundus image and fundus images with Glaucoma and Stargardt’s disease is collected 

from the ACRIMA database, retina image bank database is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Example of normal fundus image and fundus images with Glaucoma and Stargardt’s disease 

 

1.1 Problem statement 

 

The early stage of glaucoma identification is a vital role to avoid blindness. Several techniques have been developed to 

discover eye disorders through fundus images in a precise manner. However, the quality of input images was not 

enhanced. Traditional image filtering concepts are employed for enhancing the image. However, PSNR was not 

adequately enhanced. In addition, classification approaches were developed with higher accuracy. However, the time 

consumed to determine illness was not minimized without compromising accuracy. Then, feature extraction and 

segmentation processes were performed before classifying the images, hence failed to extract the robust features for 

disease prediction. In order to solve this issue, novel techniques are needed for early disease detection. 

 

The major contributions of the DNP-MDMSMSIC method are summarized as follows, 

 

❖ To increase peak signal-to-noise ratio as compared to existing works, Space-Variant Perona–Malik Diffusive Image 

Pre-processing is introduced in the DNP-MDMSMSIC method. It determines the difference between two neighboring 

pixels and eliminates the noisy pixels with strong diffusion action.  

 

❖ To minimize the disease detection time, the feature extraction process is used to deeply extract the features (i.e., color, 

texture, and intensity) with aid of a deep neural network. After the feature extraction, the Mean Shift Mode Seeking 

Segmentation algorithm is employed to partition the image pixels.  By estimating the similar neighboring pixels, the 

Gaussian kernel is used via distance measure. The mean shift procedure for detecting local maxima of modes to 

segment the images. In this way, the similar pixels in the image are segmented with minimum time. 

 

❖ To increase the disease detection accuracy with less error rate, Bregman Divergence Function is employed in the 

DNP-MDMSMSIC method where it measures the distance between the testing image region of a certain class and the 

training image region through the convex function. When the distance between the testing image and training image 

is minimum, then the retinal fundus image is categorized as an abnormal image (i.e., Glaucoma, Stargardt’s disease). 

When the distance between two images is maximum, then the image is categorized as a normal image. This helps to 

categorize the retinal fundus images into different classes for detecting the disease.  

 

 

(a) Normal fundus image  

 

(b) Fundus images 

with Glaucoma  disease 

 

c) Fundus images with  retinal 

Stargardt’s disease 
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The organization of the paper is described as follows. Section 2 discusses the literature review with its advantages and 

shortcomings. Section 3 provides the proposed methodology with an architecture diagram. Experimental settings are 

provided in section 4 which gives the details about the implementation of the method. The results and discussion is done 

in Section 5 which includes a description of evaluation measures and performance analysis.  The conclusion is drawn 

towards the end of the paper in Section 6. 

 

2.0 RELATED WORKS 

 

Optic Disc (OD) localization method was implemented in [1] to recognize the different diseases through the retinal 

images. The designed method comprises three processes such as circle distribution, circle detection, and circle center 

distribution. But, the error during the disease detection was not minimized. Deep convolution neural network (DCNN) 

was designed in [2] to discover the abnormality in retinal fundus images for improving the accuracy. The disease detection 

time was not reduced by using DCNN.  Regional classification framework was introduced in [3] for accurate localization 

and segmentation of optic disc, But, the error rate was not focused. In [4], bit-plane and local binary pattern-based 

technique was designed for glaucoma recognition. Decision level-based fusion technique was used for enhancing the 

overall performance.  The designed method does not use pre-processing method since the noise ratio was not minimized.  

 

Deep learning-based glaucoma classification network (GC-NET) was designed in [5] to identify the glaucoma diseases 

by means of categorizing the retinal images. But, the time to classify the disease was not effectively reduced. Gradient-

Boosting Classifier was designed in [6] to categorize moderate glaucoma at an earlier stage. The designed classifier 

integrates vessel density and tissue thickness determination for glaucoma detection. However, the time taken to classify 

glaucoma was more. A novel algorithm for automatic optic disc segmentation on fundus images were presented in [7] 

depended on the Circular Hough Transform (CHT), Polar Transform, and B-spline approximation. However, the peak 

signal-to-noise ratio was not analyzed by using the pre-processing algorithm. Optic Cup segmentation was implemented 

in [8] by using glowworm swarm optimization to discover glaucoma. Though accuracy was improved, the error rate was 

minimized. Glaucoma screening and recognition were performed in [9] based on the fully automated scheme. Cup-to-

Disc Ratio features are taken to discover the occurrence of glaucoma from retinal fundus images. However, the 

computation time was not reduced effectively. A deep learning technique was designed in [10] to execute glaucoma 

detection. But the accuracy was not enhanced sufficiently by using the deep learning technique. 

 

A glaucoma detection algorithm was developed in [11] for distinguishing the normal and abnormal images. But the 

designed algorithm uses more time while analyze texture features. According to the machine learning algorithms, a novel 

system was introduced in [12] to discover glaucoma. However, the noise reduction was not performed with the pre-

processing method. Two-layer sparse auto encoder was presented in [13] to perform accurate recognition of glaucoma 

from retinal fundus images. However, the performance of detection was not enough when considering a large number of 

images. Two-stage solution for optic disc localization and classification was designed in [14] for glaucoma detection. But 

more effort is required to detect glaucoma with reliability. 

 

A review of segmentation and classification approaches was analyzed in [15] for glaucoma diagnosis. Though, the noise 

elimination was not focused. Through the region-based pixel density calculation method, an improved image processing 

model was employed in [16] to partition the optic disc. However, the performance of feature extraction was not sufficient. 

Multi structure descriptor was designed in [17] for diagnosing glaucoma at an early stage.  Hybrid neural network 

classifiers were employed to categorize the healthy and glaucomatous images.  But the classification accuracy was 

effectively improved. An automated approach to detect glaucoma was presented in [18] through the texture and CNN 

descriptors. But accuracy was not increased with less time.  

 

An automatic detection scheme was introduced in [19] for diagnosing glaucoma. But the error rate was not reduced during 

the classification. Multi-Feature Vector and Deep Belief Network (MFV-DBN) was developed in [20] to determine 

glaucoma at an earlier stage. Though the method increases the accuracy, the time complexity was not effectively 

decreased. An automated detection system was introduced in [21] for screening of diabetic retinopathy. However, the 

accuracy was not increased. A convolution neural network was introduced in [22] to segment the optic disc, fovea, and 

blood vessels. An automated system was introduced in [23] for EXs detection and classification in fundus images. 

However, the accuracy was not increased. But, it failed to reduce the noise ratio. 

 

Classification of glaucoma network (CoG-NET) was introduced in [25] to discover the glaucoma disease. But, the early 

detection of glaucoma disease was not considered. A new optic disc and optic cup segmentation method were developed 
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in [26] for obtaining the glaucoma disease. Contextual information enhanced convolutional neural networks were 

designed in [27] to correctly detect the retinal vessel segmentation. However, the time was higher. Support Vector 

Machine (SVM) was introduced in [29] for binary classification. The designed machine failed to remove the noise. 

 

3.0 DNP-MDMSMSIC METHOD 

 

DNP-MDMSMSIC method is introduced to perform Glaucoma and Stargardt’s detection and classification by four 

different processes such as pre-processing, feature extraction, segmentation, and classification. A number of Retinal 

fundus images as input taken from ACRIMA database, retina image bank database, and DIARETDB0 - Standard Diabetic 

Retinopathy Database. In this work, preprocessing model uses Space-Variant Perona–Malik Diffusion to minimize the 

noise in the retinal fundus image for improving the image quality. On the contrary to the existing algorithm, feature 

extraction applies a deep neural network to learn the features for automatically extracting color, texture, and intensity 

features with lesser time. Followed by, Image segmentation utilizes a mean shift mode seeking segmentation algorithm 

to separate the similar pixels in the image. The Bergman divergence function is used to measure the distance between the 

testing image and the testing image via convex function. This assists to classify the retinal fundus images into dissimilar 

classes for identifying the disease. Therefore, the proposed DNP-MDMSMSIC method is suitable for Glaucoma and 

Stargardt’s Disease identification. DNP-MDMSMSIC Method is introduced for the detection of Glaucoma and 

Stargardt’s Disease shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: DNP-MDMSMSIC Method for Early Glaucoma and Stargardt’s Disease Detection 

 

In this method, Glaucoma and Stargardt’s detection and classification are carried out with different processes. In the deep 

learning network, nervous system cells are termed neurons. Neurons are the cells that send, receive, and transmit chemical 

and electrical signals in the brain. Number of Retinal fundus images is taken from ACRIMA database. At first, the retinal 

fundus image is used as input. These input images are fed into hidden layer one for pre-processing. In the deep neural 

network, the first layer is represented as the input layer, and the last layer is denoted as the output layer. One or more 

intermediate layers are hidden. These intermediate layers are called hidden layers for the reason that they are not straightly 

observable from inputs and outputs. The pre-processed image results are given to hidden layer two where the feature 

extraction process is carried out to obtain the features like color, texture, and intensity. After that, mean shift mode seeking 

segmentation is applied for segmenting pixels in image space. The segmented images are classified into normal, and 

abnormal. This aids to enhance the accuracy of glaucoma and Stargardt’s disease. 
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Consider the number of retinal fundus images ‘𝐼 = 𝐼1, 𝐼2, 𝐼3,….𝐼𝑛’ where ‘𝑛’ denotes, the total number of images in 

ACRIMA database ‘𝐷’. The neuron process in input layer ‘𝑢’ is given by, 

 

𝑢(𝑡) = ∑ 𝐼𝑖
𝑛
𝑖=1 𝜀𝑢𝑣 + 𝑏𝑗   (1) 

 

From (1), ‘𝑢(𝑡)’ represents the process of neurons in the input layer at time ‘𝑡’, ‘𝜀𝑢𝑣’ represents weight between input 

and hidden layer and ‘𝑏𝑗’ is a biased term. 

 

3.1 Space-Variant Perona–Malik Diffusive Image Pre-processing 

 

In image processing, pre-processing is a mandatory step to remove the noise comprised in the input image. In the DNP-

MDMSMSIC method, the retinal input fundus images from the input layer are submitted to preprocessing process in 

which the noise presented input image is eliminated. This is performed with the aid of Space-Variant Perona–Malik 

Diffusion. Anisotropic diffusion commonly called Perona–Malik diffusion was introduced by Perona and Malik in 1987 

to reduce image noise and preserve the edges. Anisotropic diffusion is a non-linear and space-variant transformation of 

the original image. Space-Variant Perona–Malik Diffusion is a preprocessing model to minimize the noise in the retinal 

fundus image. The process of space-variant Perona–Malik diffusive image pre-processing is illustrated as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Space-Variant Perona–Malik Diffusion Image Pre-processing 

 

Figure 3 demonstrates the process of image pre-processing using space-variant Perona–Malik diffusion for increasing the 

peak-signal to noise ratio. During this process, a significant part of the image content such as edges, and lines is not 

affected for further image analysis. In DNP-MDMSMSIC method, pre-processing is performed in hidden layer 1. Figure 

3 shows Space-variant Perona–Malik diffusion and its equation is expressed as,  

 
𝜕𝐼 (𝑢,𝑣,𝑡)

𝜕𝑡
= 𝑑𝑖𝑣[𝐶(‖𝛻𝐼 (𝑢, 𝑣, 𝑡)‖)𝛻𝐼(𝑢, 𝑣, 𝑡)           (2) 

 

From (2), ‘𝐼(𝑢, 𝑣, 𝑡)’ denotes input retinal fundus image, ‘𝛻𝐼 (𝑢, 𝑣, 𝑡)’ denotes gradient version of an image to preserve 

edges, ‘𝑡’ refers to the time parameter, the gradient magnitude is introduced by ‘(‖𝛻𝐼 (𝑢, 𝑣, 𝑡)‖)’, c is known as the 

conductance function, that reducing feature of the gradient magnitude. By using this function, it is employed to assure 

limit x→0 c (u) =1 , so that the diffusion is maximal within uniform regions, and limit x→∞ c(u)=0, so that the diffusion 

is stopped across edges. The conductance function that manages diffusion strength, and ‘𝑑𝑖𝑣’ is a divergence operator. 

The diffusion strength is simulated with a gradient of input image intensity. Anisotropic diffusion maintains image 

structure, textures, and edges. Perona and Malik discretized the above diffusion expression and obtained as,  

 

𝐼𝑚
𝑡+1 = 𝐼𝑚

𝑡 + ∑ 𝐶(|𝛻𝐼𝑚,𝑛|𝑛∈𝜂𝑚
)𝛻𝐼𝑚,𝑛         (3) 
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From (3), ‘𝐼𝑚
𝑡 ’ refers intensity of pixel ‘m’ from image 𝐼 at instant‘t’, ‘𝜂𝑚’ refers spatial neighborhoods (i.e., North, South, 

East and West neighbors) of current pixel ‘m’, ‘𝐶’ is conductance function. Then the difference between neighboring 

pixels in each direction is expressed as,  

 

𝛻𝐼𝑚,𝑛 = 𝐼𝑛
𝑡 − 𝐼𝑚

𝑡 Where𝑛 ∈ {𝑁, 𝑆, 𝐸, 𝑊} (4) 

 

From (4), ‘𝐼𝑚
𝑡 ’ denotes intensity of current pixel‘m’ and ‘𝐼𝑛

𝑡 ’ denotes intensity of neighboring pixel ‘n’. Substitute equation 

(4) in (3), then obtained as,  

𝐼𝑚
𝑡+1 = 𝐼𝑚

𝑡 + ∑ 𝐶(𝑛∈{𝑁,𝑆,𝐸,𝑊} 𝐼𝑛
𝑡 − 𝐼𝑚

𝑡 ). (𝐼𝑛
𝑡 − 𝐼𝑚

𝑡 )        (5) 

 

From (5), the noise pixel provides strong diffusion action and image contrast is improved. In proposed DNP-MDMSMSIC 

method, the deep neural network automatically learns features for extracting the color, texture, and intensity features from 

input preprocessed images in the hidden layer. This aids to decreases the disease detection time as shown in figure 4. 

With the extracted features, these images are segmented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Feature extraction (a) Pre-processed input image (b) Automatically extract the feature images 

 

3.2 Mean Shift Mode Seeking Segmentation Algorithm 

 

In the third hidden layer, the segmentation process is performed. Mean shift is a non-parametric iterative model-based 

algorithm for locating the maxima modes for each pixel so-called mode-seeking algorithm was developed by Fukunaga 

and Hostetler in 1975. The mean shift mode-seeking segmentation algorithm shown in figure 5 is a non-parametric 

iterative mode-based algorithm. It is employed to determine the maximum density function. Mean Shift Mode Seeking 

algorithm is an efficient method to detect the mode of each pixel for segmentation. 
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Fig. 5: Mean Shift Mode Seeking Segmentation Algorithm 

 

Mean Shift Mode Seeking algorithm detects the mode of each pixel for segmentation. The mean shift mode seeking 

segmentation algorithm partitions the pixels with feature space points. The segmentation algorithm uses a Gaussian kernel 

to determine similar neighboring pixels via distance measure. The Gaussian kernel is optimal since it includes a smooth 

trajectory for convergence. Then the mean shift procedure is employed for segmenting images by detecting local maxima 

modes for each pixel. With this, the more similar pixels are segmented with higher accuracy. 

 

Consider the number of pixels in the input feature extraction image. The Gaussian kernel function identifies the distance 

between two pixels and is expressed as, 

𝐺 (𝐼𝑚 , 𝐼𝑛) =
1

2𝜎2 𝑒𝑥𝑝 −(‖𝐼𝑛−𝐼𝑚‖)2
   (6) 

 

From (6), ‘𝐺’ represents a Gaussian kernel function, ‘‖𝐼𝑛 − 𝐼𝑚‖2’ indicates a squared distance between a neighboring 

pixel of image ‘𝐼𝑛’ and current pixel of image ‘𝐼𝑚’ and ‘𝜎’ denotes a deviation. The minimal distance among pixels is 

considered for segmenting process. After computing the distance between each pixel, the mean shift procedure is carried 

out to segment similar pixels in the image. Then the mean shift based on the Gaussian kernel is given by, 

 

𝑀(𝐼𝑚) =
∑ 𝐺(𝐼𝑛−𝐼𝑚).𝐼𝑛

𝑁
𝑛=1

∑ 𝐺(𝐼𝑛−𝐼𝑚)𝑁
𝑛=1

  (7)  

 

From (7),𝑀(𝐼𝑚) refers to a mean shift.  ‘𝑀(𝐼𝑚)’ is determined for each pixel in the image. This process is repeated until 

attaining convergence. The pre-processed image is segmented in hidden layer three. Thus, the process of neurons in the 

hidden layers is obtained as follows, 

𝑣𝑖(𝑡) = 𝑀(𝐼𝑚) ∑ 𝑢(𝑡)𝑛
𝑖=1 𝜀𝑣𝑖

 (8) 

 

From (8), ‘𝑣𝑖(𝑡)’ denotes the process of neurons in hidden layers at a time ‘𝑡’ and ‘𝜀𝑣𝑖
’ denotes the weight of hidden 

layers. From the above expression, the retinal images are segmented. The results of segmented images are given to the 

output layer where the classification is performed to identify the disease.   
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3.3 Bregman Divergence Function 

 

Bregman divergence is a measure of the difference between two points via convex function was presented by Lev M. 

Bregman in 1967.The Bergman divergence function is applied at the output layer in the DNP-MDMSMSIC method for 

classifying the segment for identifying disease at an early stage. In the DNP-MDMSMSIC method, Bregman Divergence 

Function computes the distance between two segmented regions (i.e., testing image region of a particular class and 

training image region) through convex function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Bergman divergence function (a) segmented input image (b) Find disease image in early stage 

Figure 6 shows the Bergman divergence function of input and output images.Thus, the Bergman divergence function is 

measured as [28], 

𝐵𝐹(𝑥𝐼 , 𝑦𝐼) = 𝐹(𝑥𝐼) − 𝐹(𝑦𝐼) − 〈∇𝐹(𝑦𝐼), 𝑥𝐼 − 𝑦𝐼〉         (9) 

 

From (9), ‘𝐵𝐹’ denotes the Bergman divergence function, ‘𝑥𝐼’ denotes the testing image and ‘𝑦𝐼’ indicates a training 

image. If the distance between the testing image and the training image is less, then the retinal fundus image is classified 

as an abnormal or diseased image. Or else, it is classified as normal. The neuron process in the output layer is given by, 

 

𝑤(𝑡) = 𝐵𝐹(𝑥𝐼 , 𝑦𝐼)(𝑣𝑖(𝑡)𝜀𝑣𝑤)   (10) 

 

From (10), ‘𝑤(𝑡)’ denotes activity of neuron at time ‘𝑡’ and ‘𝜀𝑣𝑤’ denotes weight between hidden and output layer. Where 

𝐸(𝑡) expressed by, 

𝐸(𝑡) = 𝑤(𝑡)′ − 𝑤(𝑡) (11) 

 

From (11), ‘𝐸(𝑡)’ denotes the error rate, ‘𝑤(𝑡)′’ denotes predicted output and ‘𝑤(𝑡)’ refers to actual output. Based on 

the error rate, weights are updated and determine minimal error output for disease detection. From that, glaucoma and 

Stargardt’s disease detection is performed in the DNP-MDMSMSIC method with higher accuracy and less time.  

 

4.0 EXPERIMENTAL SETTINGS 

 

The performance of the DNP-MDMSMSIC method, existing [1], [2] and [29] are implemented in MATLAB with 

ACRIMA database, retina image bank database, andDIARETDB0 - Standard Diabetic Retinopathy Database. Based on 

the objective of the proposed method (i.e., focused on accuracy with lesser disease detection error, and disease detection 

time) the existing methods such as OD localization and DCNN are taken as base paper. These two existing methods are 

recent and relevant papers in the proposed method. Existing OD localization was employed to detect disc candidate 

locations. However, the disease detection error was not minimized. Existing DCNN was utilized for finding the 

abnormality in retinal fundus images. But, it failed to lessen the disease detection time. By considering the above two 

problems of these methods, the proposed DNP-MDMSMSIC method concept is derived. The drawbacks of these methods 

are effectively convinced by implementing the proposed DNP-MDMSMSIC method. 

 

 In order to conduct the experiment, The MATLAB 2015 b platform is used to develop the proposed method, the different 

toolboxes are used for software and hardware requirements such as Windows 10 Operating system, core i3-4130 3.40GHZ 

 

(a) Segmented images 

 

(b) Find disease image in earlystage 

https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Lev_M._Bregman
https://en.wikipedia.org/wiki/Lev_M._Bregman
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Processor, 4GB RAM, 1TB (1000 GB) Hard disk, ASUSTek P5G41C-M Motherboard, Internet Protocol. The ACRIMA 

database [30], retina image bank database [31], and DIARETDB0 - Standard Diabetic Retinopathy Database [32] are 

divided into two sets such as training and validation. 70% of images are employed for training and the remaining 30% of 

images are applied for validation for each dataset. The runtime is measured as the amount of time taken by the algorithm 

to run based on CPU execution time, processor speed, instruction set, disk speed, and brand of the compiler. The overall 

proposed DNP-MDMSMSIC method run time is 27ms for conducting the experiments. 

 

Table 1: Three dataset information 

 

 

 

 

 

 

ACRIMA 

database 

Year 2019 

Dataset size 25MB 

Total image 705 

Retinal fundus images are 

categorized as glaucomatous or 

abnormal 

396 

Normal images 309 

Retinal fundus image size (KB) 21.3, 15.4, 9.13, 16.5, 19.7, 26.3, 

17.9, 32.2, 11.7, 10.2 

No. of Retinal fundus images  20, 40, 60,80, 100, 120, 140, 160, 

180, 200 

 

 

 

 

Retina image bank 

database 

Year 2018 

Dataset size 81.2 KB 

Total image 27313 

Retinal fundus images for identifying 

the Stargardt’s diseases 

352 

Retinal fundus image size (KB) 30.6, 35.8, 38.5, 35.5, 30.0, 36.0, 

51.7, 39.0, 51.4, 54.0 

No. of Retinal fundus images 20, 40, 60,80, 100, 120, 140, 160, 

180, 200 

 

 

DIARETDB0 - 

Standard Diabetic 

Retinopathy Database 

Year 2007 

Dataset size 270MB 

Total image 130 

Normal image 20 

Diabetic retinopathy images 110 

Retinal fundus image size (KB) 1.52, 1.61, 1.6, 1.58, 1.56, 1.57, 1.63, 

1.32, 1.68, 1.73 

No. of Retinal fundus images 12, 24, 36, 48,60, 72, 84, 96, 108, 120 

 

4.1 Result & Discussion 

 

The performance analysis of the proposed DNP-MDMSMSIC method and three existing methods such as [1] [2] and [29] 

results are discussed and analyzed. The metrics for performance analysis of proposed and existing methods are explained. 

All the experimentation has been carried out by the same dataset to compare the performance results. The following 

testing metrics are used for validating the results of the DNP-MDMSMSIC method with existing methods. 
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(a) Retinal fundus images 

 
 

(b) Accurately classified 

fundus image 

 
 

(c) Retinal fundus images 

 
 

(d) Misclassified retinal 

fundus image 

 
 

(e) Retinal fundus images with 

low PSNR 

 
(f) Misclassified retinal 

fundus image with low PSNR 

 
 

(g) Retinal fundus images with 

lower PSNR 

 
(h) Accurate classification retinal 

fundus image with lower PSNR 

 
i) Normal fundus images with high 

PSNR 

 
j) Misclassified fundus image 

with high PSNR 

 
k) Normal fundus images with lower 

PSNR 

 
l) Accurate classification 

fundus image with lower PSNR 
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Fig. 7: (a and c) Retinal fundus images, (b) Accurately classified fundus image, (d) Misclassified retinal fundus image, 

(e) Retinal fundus images with high PSNR, (f) Misclassified retinal fundus image with low PSNR, (g) Retinal fundus 

images with lower PSNR, (h) Accurate classification retinal fundus image with lower PSNR, i) Normal fundus images 

with high PSNR, j) Misclassified fundus image with high PSNR, k) Normal fundus images with lower PSNR, l) 

Accurate classification fundus image with lower PSNR 

 

In the proposed method, the retinal fundus images (i.e., disease images) are classified accurately shown in fig. 7 (a) and 

(b). The retinal fundus images (i.e., disease images) are misclassified. For example, Optic disc covered by retinal vessels 

tend to be misclassified. Three types of fundus images are misclassified in the proposed method and the results in the 

misclassifications are shown in Fig 7 (c) and (d) retinal fundus image and misclassified retinal fundus image. Fig 7 (e) 

and (f), normal fundus images with lower PSNR into misclassified retinal fundus image with lower PSNR. Fig 7 (i) and 

(j) Normal retinal fundus images with high PSNR (i.e., without disease image) and misclassified fundus image with high 

PSNR. The retinal fundus images with lower PSNR (i.e., without disease image) however outcomes in 

accurate classification are depicted in fig 7 (g) and (h). The normal fundus images with higher PSNR (i.e., without disease 

image) however outcomes in accurate classification are depicted in fig 7 (g) and (h). 

 

4.2 Disease detection accuracy 

 

𝐷𝐴𝐶𝐶is defined as proportion of number of retinal fundus images are accurately detected as normal or diseased to total 

number of retinal fundus images. 𝐷𝐴𝐶𝐶  is computed in percentage (%) and given below, 

 

𝐷𝐴𝐶𝐶 = [
𝐴𝐷𝑅𝐼

𝑅𝐼𝑚
] ∗ 100   (12) 

 

From (12), ‘𝐷𝐴𝐶𝐶’ refers to disease detection accuracy, ‘𝐴𝐷𝑅𝐼’ denotes accurately detected disease or normal retinal 

images and ‘𝑅𝐼𝑚’ denotes input retinal fundus images. 

 

Table 2(a): Comparison based on disease detection accuracy using ACRIMA database 

 

No. of 

Retinal 

fundus 

images 

Disease detection accuracy (%) 

DNP-

MDMSMSIC 

OD 

Localization 

method 

DCNN SVM 

20 85 80 75 70 

40 88 83 78 73 

60 90 87 83 76 

80 92 89 86 79 

100 91 88 82 76 

120 95 88 83 79 

140 93 89 85 81 

160 92 87 84 80 

180 95 89 87 84 

200 94 88 86 83 
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Table 2(b): Comparison based on disease detection accuracy using retina image bank database 

 

No. of 

Retinal 

fundus 

images 

Disease detection accuracy (%) 

DNP-

MDMSMSIC 

OD 

Localization 

method  

DCNN SVM 

20 80 75 70 66 

40 85 80 75 68 

60 88 85 80 71 

80 91 88 84 75 

100 89 86 80 72 

120 94 86 82 75 

140 91 87 84 78 

160 91 86 82 76 

180 94 88 85 80 

200 93 87 84 79 

 

Table 2(c): Comparison based on disease detection accuracy using DIARETDB0 – Standard Diabetic  

Retinopathy Database 

 

No. of 

Retinal 

fundus 

images 

Disease detection accuracy (%) 

DNP-

MDMSMSIC 

OD 

Localization 

method  

DCNN SVM 

12 78 72 68 63 

24 83 78 73 68 

36 86 83 78 72 

48 89 86 82 77 

60 87 84 82 76 

72 88 84 80 75 

84 89 85 82 76 

96 90 84 80 74 

108 92 86 83 75 

120 91 85 82 74 

 

Table 2 (a), Table 2 (b), and Table 2 (c), show the results of 𝐷𝐴𝐶𝐶  using three databases. 𝐷𝐴𝐶𝐶  Of DNP-MDMSMSIC 

method is improved than the other three methods. Totally ten different results are obtained for different input retinal 

fundus images. In table 1 (a), the number of retinal images is represented as glaucoma disease. This is due to the 

application of mean shift mode seeking segmentation and the Bregman divergence function. The feature extraction images 

are segmented into different parts. Then the distance between two segmented regions and the image is measured to classify 

the disease into diverse classes with lesser error. This leads to an increase in the accuracy of disease detection in DNP-

MDMSMSIC as compared to conventional methods. The disease detection accuracy of DNP-MDMSMSIC is improved 

by 5%, 10% and 17% as compared to [1], [2] and [29] using ACRIMA database. 𝐷𝐴𝐶𝐶  of retina image bank database is 

increased by 6%, 11% and 21% as compared to [1],[2] and [29]. 𝐷𝐴𝐶𝐶  ofDIARETDB0 - Standard Diabetic Retinopathy 

Database is enhanced by 6%, 11% and 20% as compared to [1], [2] and [29] shown in Figures8a, 8b, and 8c.  
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Fig. 8(a): Plot showing the results of disease detection accuracy for ACRIMA database 

 

 
Fig. 8(b): Results of disease detection accuracy for retina image bank database 

 

 
Fig. 8(c): Results of disease detection accuracy for DIARETDB0 - Standard Diabetic Retinopathy Database 

 

Figure 8 a, 8 b, and 8 c shows the experimental results analysis of disease detection accuracy using three different methods 

with three datasets. The impact of disease detection accuracy along with the different number of retinal fundus images 

using the proposed DNP-MDMSMSIC method is evaluated with existing methods such as the OD Localization method 

[1], DCNN [2] and SVM [29]. 
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4.3 Peak signal to noise ratio 

 

 ‘𝑃𝑆𝑁𝑅’ is calculated as the quality measurement of the difference between the original image and the compressed image. 

𝑃𝑆𝑁𝑅 is measured in decibel (dB).The MSE denotes the increasing squared error between the compressed and the original 

image. ‘𝑃𝑆𝑁𝑅’ is expressed as, 

𝑀𝑆𝐸 =
∑ 𝑚,𝑛 [𝐼1(𝑚,𝑛)−𝐼2(𝑚,𝑛)]2

𝑀∗𝑁
  (13) 

 

𝑃𝑆𝑁𝑅 = 10 ∗ log10 [
𝑅2

𝑀𝑆𝐸
] (14) 

 

From (13), (14), ‘𝑀𝑆𝐸’ refers to a mean square error. The compressed image size is denoted as ‘𝐼1(𝑚, 𝑛)’ and the original 

input image size is indicated as ‘𝐼2(𝑚, 𝑛)’. ‘M’ and ‘N’ denotes the number of rows and columns in the input images 

‘𝑃𝑆𝑁𝑅’ denotes peak signal-to-noise ratio and ‘𝑅’ denotes maximum possible pixel range (i.e. R=255). 

 

Table 3(a): Comparison based on peak signal to noise ratio using ACRIMA database 

 

Retinal 

fundus 

image sizes 

(KB) 

Peak signal to noise ratio (dB) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

21.3 48.13 42.11 41.28 39.05 

15.4 58.58 52.57 49.04 46.54 

9.13 60.9 50.86 47.07 44.43 

16.5 62.11 52.57 48.13 45.21 

19.7 58.59 51.23 47.3 44.61 

26.3 62.11 52.57 48.13 45.85 

17.9 56.09 51.23 46.55 44.61 

32.2 52.57 47.3 44.05 42.25 

11.7 58.59 51.23 48.13 45.85 

10.2 56.09 48.13 45.21 43.52 

 

Table 3(b): Comparison based on peak signal to noise ratio using retina image bank database 

 

Retinal 

fundus 

image 

sizes (KB) 

Peak signal to noise ratio (dB) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

30.6 52.57 50.07 48.13 45.85 

35.8 54.15 48.13 47.3 44.04 

38.5 49.05 46.54 44.05 41.68 

35.5 56.09 49.05 45.85 44.04 

30.0 51.23 45.21 43.02 42.11 

36.0 51.23 46.56 43.52 42.11 

51.7 54.15 48.13 45.2 43.52 

39.0 48.13 45.21 43.52 42.11 

51.4 54.15 45.85 44.6 42.55 

54.0 56.09 51.22 47.3 44.04 
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Table 3(c): Comparison based on peak signal to noise ratio using DIARETDB0 - Standard Diabetic  

Retinopathy Database 

 

Retinal 

fundus 

image sizes 

(KB) 

Peak signal to noise ratio (dB) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

1.52 78.58 70.06 66.54 62.22 

1.61 82.11 69.04 65.85 60.46 

1.6 76.08 68.13 65.2 58.84 

1.58 78.58 72.56 70.06 64.78 

1.56 74.15 70.06 67.3 61.55 

1.57 71.22 65.85 64.04 58.48 

1.63 70.06 67.3 65.85 59.43 

1.32 78.58 72.56 68.13 62.55 

1.68 72.56 67.3 64.6 60.78 

1.73 72.58 71.22 67.3 62.12 

 

Table 3 (a), Table3 (b), and Table3 (c) describes 𝑆𝑁𝑅𝑃with different sizes of images from three databases. Among the 

four methods, the DNP-MDMSMSIC method provides higher𝑆𝑁𝑅𝑃. In table 3 (b), the number of retinal images is 

indicated as Stargardt's disease. 

 

 
Fig. 9(a): Results of peak signal to noise ratio for ACRIMA database 

 

 
Fig. 9(b): Results of peak signal to noise ratio for retina image bank database 
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Fig. 9(c): Results of peak signal to noise ratio for DIARETDB0 - Standard Diabetic Retinopathy Database 

 

Figure 9(a), 9(b), and 9(c) demonstrates the results analysis of peak signal-to-noise ratio using the proposed method, 

existing [1] [2] and [29] for three databases. The proposed DNP-MDMSMSIC method provides a greater peak signal-to-

noise ratio for disease detection as compared to conventional methods. The performance of better peak signal-to-noise 

ratio is achieved by applying image pre-processing model called space-variant Perona–Malik diffusion. During the image 

pre-processing the variation between neighboring pixel, and intensity is measured to remove the noisy pixel. At this time, 

the image content like lines, and edges are preserved to enhance image quality. With these feature extraction images, the 

noise level is highly reduced and thus the performance of the peak signal to noise ratio is improved. The DNP-

MDMSMSIC method increases 𝑆𝑁𝑅𝑃with ACRIMA by 15%, 23% and 30% as compared to [1], [2] and [29]. 𝑆𝑁𝑅𝑃For 

retina image bank database is improved by 11%, 16% and 22% as compared to [1], [2] and [29].  𝑆𝑁𝑅𝑃for DIARETDB0 

- Standard Diabetic Retinopathy Database is enhanced by 8%, 13% and 23% as compared to [1], [2] and[29] shown in 

figures 9a, 9b, and 9c. 

 

4.4  Disease Detection Time 

 

Disease detection time (𝑡𝐺𝐷𝐷) is calculated as amount of time consumed to detect disease or normal image.𝑡𝐺𝐷𝐷 Is 

determined in milliseconds (ms). The mathematical expression to compute the 𝑡𝐺𝐷𝐷is provided as follows, 

 

𝑡𝐺𝐷𝐷 =  𝑅𝐼𝑚 ∗ 𝑇𝑖𝑚𝑒 (𝑑𝑆𝐼)  (15) 

 

From (15), ‘𝑑𝑆𝐼’ is the single image detection. The minimum value of time indicates a better performance of disease 

detection. Table 4 (a), Table4 (b), and Table4 (c) shows the results of 𝑡𝐺𝐷𝐷with the number of retinal fundus images. 

𝑡𝐺𝐷𝐷 Using the DNP-MDMSMSIC method is decreased than the state-of-the-art methods. In table 4 (c), the number of 

retinal images is indicated as glaucoma and Stargardt’s disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

1.52 1.61 1.6 1.58 1.56 1.57 1.63 1.32 1.68 1.73

P
ea

k
 s

ig
n

a
l 

to
 n

o
is

e 
ra

ti
o
 (

d
B

) 

Retinal fundus image sizes (KB) 

DNP-MDMSMSIC

OD Localization

DCNN

SVM



Deep Perona–Malik Diffusive Mean Shift Image Classification for Early Glaucoma  

and Stargardt Disease Detection. pp., 14-39 

 

30 

Malaysian Journal of Computer Science, Vol. 36 (1), 2023 

Table 4(a): Comparison based on disease detection time using ACRIMA database 

 

No. 

of Retinal 

fundus 

images 

Disease detection time (ms) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

20 15 20 24 27 

40 17 22 26 29 

60 21 25 29 32 

80 23 28 32 34 

100 27 32 36 39 

120 31 35 39 41 

140 33 37 42 45 

160 38 42 45 48 

180 40 44 49 52 

200 42 47 51 54 

 

Table 4(b): Comparison based on disease detection time using retina image bank database 

 

No. of 

Retinal 

fundus 

images 

Disease detection time (ms) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

20 18 23 27 30 

40 19 25 29 32 

60 22 26 31 34 

80 25 28 32 36 

100 26 30 34 37 

120 31 35 38 41 

140 35 38 42 45 

160 39 42 46 49 

180 40 45 50 52 

200 43 47 52 55 

 

Table 4(c): Comparison based on disease detection time using DIARETDB0 - Standard Diabetic Retinopathy Database 

 

No. of 

Retinal 

fundus 

images 

Disease detection time (ms) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

12 13 20 25 28 

24 16 22 27 30 

36 18 24 29 32 

48 21 26 30 34 

60 23 28 32 36 

72 27 30 36 39 

84 31 33 40 43 

96 33 37 42 45 

108 36 40 48 50 

120 38 45 50 53 
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The above table 4(a), (b), (c) shows the comparison results of ‘𝑡𝐺𝐷𝐷’ with respect to the different number of retinal fundus 

images. 

 
Fig. 10(a): Results of disease detection time for ACRIMA database 

 

 
 

Fig. 10(b): Results of disease detection time for retina image bank database 

 
Fig. 10(c): Results of disease detection time for DIARETDB0 - Standard Diabetic Retinopathy Database 
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Figure 10 a, 10 b, and 10 c depicts the results analysis of ‘𝑡𝐺𝐷𝐷’ with respect to diverse number of retinal fundus images 

using proposed and existing [1] [2] and [29].  In the above graph, x-axis shows the number of retinal images and the 

corresponding time to detect the disease is given in the y-axis. As presented in the above graphical plot, the proposed 

DNP-MDMSMSIC method gives lower amount of time consumption for disease detection than the other methods. The 

minimal amount of time complexity is attained with the process of pre-processing and feature extraction. At first, space-

variant Perona–Malik diffusion is employed to de-noise the input images. This leads to enhance the contrast for further 

analysis. Then the features for disease detection such as color, texture and intensity are automatically extracted using the 

deep learning model of the DNP-MDMSMSIC method. This considerably lessens the overall time consumption for early 

disease detection.‘𝑡𝐺𝐷𝐷’ of DNP-MDMSMSIC method using ACRIMA database is reduced by 15%, 25% and 30% as 

compared to [1],[2] and [29]. 𝑡𝐺𝐷𝐷of retina image bank database is minimized by 13%, 23% and 29% as compared to [1], 

[2] and [29]. 𝑡𝐺𝐷𝐷of DIARETDB0 - Standard Diabetic Retinopathy Database is reduced by 18%, 30% and 36% as 

compared to [1], [2] and [29] shown in figures10a, 10b, and 10c. 

 

4.5  Error Rate 

 

Error rate (𝑅𝐸) is determined as ratio of number of retinal fundus images are wrongly detected from input images. 𝑅𝐸 is 

expressed as follows. 

𝑅𝐸 = (
𝑊𝐷𝑅𝐼

𝑅𝐼𝑚
) ∗ 100  (16) 

 

From (16), ‘𝑊𝐷𝑅𝐼’ denotes wrongly detected retinal images. 𝑅𝐸 is measured in percentage (%). Table 5 (a), Table 5 (b), 

and Table 5 (c) illustrates 𝑅𝐸with the number of retinal fundus images using two diverse datasets. In table 5 (a), the 

number of retinal images is referred to as glaucoma disease. By analyzing the above table, the amount of retinal fundus 

images incorrectly detected is reduced in DNP-MDMSMSIC. 

 

Table 5(a): Comparison based on error rate using ACRIMA database 

 

No. of 

Retinal 

fundus 

images 

Error rate (%) 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

20 15 20 25 30 

40 12 17 22 27 

60 10 13 17 24 

80 8 11 14 21 

100 9 12 18 24 

120 5 12 17 21 

140 7 11 15 19 

160 8 13 16 20 

180 5 11 13 16 

200 6 12 14 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Deep Perona–Malik Diffusive Mean Shift Image Classification for Early Glaucoma  

and Stargardt Disease Detection. pp., 14-39 

 

33 

Malaysian Journal of Computer Science, Vol. 36 (1), 2023 

Table 5(b): Comparison based on error rate using retina image bank database 

 

No. of Retinal 

fundus images 

Error rate (%) 

DNP-

MDMSMSIC 

OD 

Localization 

DCNN SVM 

20 20 25 30 34 

40 15 20 25 32 

60 12 15 20 29 

80 9 12 16 25 

100 11 14 20 28 

120 6 14 18 25 

140 9 13 16 22 

160 9 14 18 24 

180 6 12 15 20 

200 7 13 16 21 

 

Table 5 (c): Comparison based on error rate usingDIARETDB0 - Standard Diabetic Retinopathy Database 

No. of 

Retinal 

fundus 

images 

Error rate (%) 

DNP-

MDMSMSIC 

OD 

Localization 

DCNN SVM 

12 22 28 32 37 

24 17 22 27 32 

36 14 17 22 28 

48 11 14 18 23 

60 13 16 18 24 

72 12 16 20 25 

84 11 15 18 24 

96 10 16 20 26 

108 8 14 17 25 

120 9 15 18 26 

 

Table 5(a), (b), and (c) illustrate the performance comparison of 𝑅𝐸 based on the number of retinal fundus images using 

two diverse datasets. In experiments, the results of 𝑅𝐸using the DNP-MDMSMSIC method is evaluated with the existing 

OD Localization method [1], DCNN [2], and SVM [29]. 

 

 
Fig.11(a): Experimental results of error rate for ACRIMA database 
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Fig.11(b): Experimental results of error rate for retina image bank database 

 

 
Fig. 11(c): Experimental results of error rate for DIARETDB0 - Standard Diabetic Retinopathy Database 

 

Figure 11 a, 11 b, and 11 c demonstrates the results analysis of 𝑅𝐸depends on the diverse number of retinal fundus images 

from different datasets. As shown in the graphical plot, the proposed DNP-MDMSMSIC method gives a minimal error 

during disease detection when compared to state-of-the-art methods. A lower amount of error is achieved with the design 

of accurate segmentation and classification process in the DNP-MDMSMSIC method. A similar set of pixels in the retinal 

fundus images are divided into number of segments by using the mean shift procedure.  Then the partitioned images are 

categorized by measuring the distance between them using the Bergman function. In addition, the error in the output layer 

is measured to give minimal misclassification results. This leads to an efficient decrease the disease detection error. DNP-

MDMSMSIC method using ACRIMA database reduces 𝑅𝐸by 37%, 51% and 62% as compared to [1], [2] and [29]. 𝑅𝐸 

using retina image bank database is decreased by 33%, 48% and 61% as compared to [1], [2] and [29].𝑅𝐸using 

DIARETDB0 - Standard Diabetic Retinopathy Databaseis reduced by 27%, 40% and 54% as compared to [1], [2] and 

[29] shown in figures11a, 11b, and 11c. 

 

4.6 Performance measure of SSIM 

 

The structural similarity index ‘𝑆𝑆𝐼𝑀’ is computed based on the mean values, standard deviation, and cross variance and 

is mathematically calculated as given below. 

 

𝑆𝑆𝐼𝑀(𝑖, 𝑗) =
(2𝜇𝑖𝜇𝑗+𝐶1)(2𝜎𝑖𝑗+𝐶2)

(𝜇2𝑖+𝜇2𝑗+𝐶1)(𝜎2𝑖+𝜎2𝑗+𝐶2)
 (17) 
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In the above equation (17), ‘SSIM’ is indicated as the structural similarity index, and the mean values are represented as 

‘𝜇𝑖𝜇𝑗 , 𝜇2𝑖, 𝜇2𝑗’, the standard deviation is indicated as ‘𝜎2𝑖, 𝜎2𝑗’ and the cross variance is represented as ‘𝜎𝑖𝑗’ for brain 

tumor images ‘𝑖, 𝑗’ respectively.  

 

Table 6(a): Comparison based on SSIM using ACRIMA database 

Retinal fundus 

image sizes (KB) 

SSIM 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

21.3 0.915 0.785 0.745 0.685 

15.4 0.885 0.775 0.705 0.655 

9.13 0.825 0.735 0.675 0.625 

16.5 0.835 0.715 0.655 0.605 

19.7 0.855 0.775 0.725 0.645 

26.3 0.875 0.795 0.745 0.675 

17.9 0.895 0.835 0.765 0.695 

32.2 0.865 0.815 0.755 0.675 

11.7 0.9 0.84 0.775 0.685 

10.2 0.915 0.865 0.8 0.695 

 

Table 6(b): Comparison based on SSIM using retina image bank database 

Retinal 

fundus image 

sizes (KB) 

SSIM 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

30.6 0.945 0.805 0.765 0.695 

35.8 0.915 0.795 0.725 0.675 

38.5 0.885 0.755 0.695 0.645 

35.5 0.875 0.735 0.675 0.625 

30.0 0.905 0.795 0.745 0.685 

36.0 0.915 0.805 0.765 0.695 

51.7 0.935 0.855 0.785 0.705 

39.0 0.905 0.835 0.775 0.725 

51.4 0.94 0.86 0.795 0.745 

54.0 0.945 0.885 0.82 0.765 

 

Table 6(c): Comparison based on SSIM using DIARETDB0 - Standard Diabetic Retinopathy Database 

Retinal 

fundus 

image sizes 

(KB) 

SSIM 

DNP-

MDMSMSIC 

OD 

Localization  

DCNN SVM 

1.52 0.965 0.825 0.785 0.715 

1.61 0.935 0.815 0.745 0.675 

1.6 0.905 0.775 0.715 0.655 

1.58 0.885 0.755 0.695 0.625 

1.56 0.915 0.815 0.765 0.685 

1.57 0.925 0.825 0.785 0.695 

1.63 0.945 0.875 0.805 0.725 

1.32 0.925 0.855 0.795 0.735 

1.68 0.96 0.88 0.815 0.755 

1.73 0.965 0.895 0.84 0.775 
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Fig. 12(a): Results of SSIM for ACRIMA database 

 

 
Fig. 12(b): Results of SSIM for retina image bank database 

 

 
Fig. 12(c): Results of SSIM for DIARETDB0 - Standard Diabetic Retinopathy Database 
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Figure 12 a, 12 b, and 12 c shows the experimental results analysis of SSIM with respect to 10 dissimilar images of 

different sizes. This is owing to the application of mean shift mode seeking segmentation and Bregman divergence 

function. The DNP-MDMSMSIC method increases SSIM with ACRIMA by 11%, 20% and 32% as compared to [1], [2] 

and [29]. SSIM for retina image bank database is improved by 13%, 22% and 32% as compared to [1], [2] and [29].SSIM 

for DIARETDB0 - Standard Diabetic Retinopathy Database is enhanced by 12%, 21% and 33% as compared to [1], [2] 

and [29]. 

 

5.0 CONCLUSION  

 

A DNP-MDMSMSIC method is designed to detect Glaucoma and Stargardt’s disease, at early stage Space-variant 

Perona–Malik diffusive image pre-processing is performed to de-noise the input image to improvise image quality. The 

color, texture, and intensity features are extracted with higher accuracy for disease detection. By considering these 

extracted features, the feature extraction images are segmented. Further processing of the images in the designed 

algorithm, segments the pixels in image space by identifying the local maxima modes of each pixel. These segmented 

images are classified by determining the distance between two segmented regions. Then, retinal fundus images are 

classified. This enhances the disease detection using DNP-MDMSMSIC. The result of the DNP-MDMSMSIC method 

improves disease detection accuracy with lesser time and error as compared to OD localization method DCNN. The 

proposed DNP-MDMSMSIC method is further implemented to enhance accuracy and reduce time consumption by using 

novel deep learning techniques. 
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