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ABSTRACT 

Contamination of EOG activities in EEG signals remains a significant problem in designing the hybrid BCI 

system. Since EEG signals have always been contaminated by EOG artifacts, we employ these artifacts as 

inputs into our system. Therefore, in this study we utilized theEEG and its EOG artifacts as inputs to the hybrid 

BCI and evaluated the classification performance between thresholding and classifier techniques to determine 

the eyelid position and eyeball movement from EEG signals and its EOG artifacts in real-time. The EEG signals 

are recorded from the occipital (channel O2) and motor cortex (channel C3 and C4) on the scalp using 10-20 

montage system. First, alpha band signal at channel O2 is monitored and analyzed to determine the eyelid 

position of eye closed and open. If the eyes are open, EOG traces in two delta band signals related to horizontal 

eyeball movement at channel C3 and C4 are examined to obtain the eyeball movement classification. A sliding 

window frame is utilized to analyze the EOG trace signals so that important cues are positioned at the center of 

the window for effective classification. A few features can be extracted from the EEG data in the window and 

utilized to determine the eyelid position and eyeball movement by thresholding. The data can also be utilized 

directly as inputs to MLP or SVM classifiers and their performances are compared with the thresholding 

scheme. The highest classification rate of 0.98% is obtained by the SVM classifiers with an average execution 

time of just 0.53s. The result of this classification can be utilized in hybrid BCI for various applications. 

Keywords: EEG signals, EOG artifacts, Hybrid BCI, Eyeball Movement, Eyelid Position, Real-time.   

1.0 INTRODUCTION 

The variety of Human Machine Interface (HMI) for assistive applications has been proposed in many studies to 

help those with disabilities [1-3]. Alternative strategies using bio-signal (i.e., electroencephalography (EEG), 

electrooculography (EOG) and electromyography (EMG))demand lesser control of the body functions for 

controlling HMI[4].These strategies are suitable for those with severe motor disabilities or suffered from 

locked-in syndrome.However, each approach has its own advantages and disadvantages. For instance, EMG 

signals can be measured from various types of muscle in any part of the body. On the other hand, EEG and EOG 

signals can only be measured from the scalp and outer canthi respectively. Unlike EEG, EMG and EOG signals 

has higher amplitude and signal-to-noise ratio (SNR). EEGis difficult to modulate and always contaminated 

with noise from other bio-signals. In the cases of extreme motor impairment condition, it is expected that 

number of muscles can be explored are limited while cognitive activity and eye movements are mostly 

preserved[5]. These limitations have led researchers to develop a hybrid HMI that combines different 

approaches to utilize the advantages of multiple bio-signals in a system. The use of hybrid HMI will reduce the 

errors as well as increase the robustness of the interface. 
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EEG based HMI is also known as Brain Computer Interface (BCI), which can translate the user’s intention into 

computer commands.This user’s intention will generate a unique EEG pattern, which can be evoked by external 

stimuli and known as event related potential (ERP).An ERP can be analyzed in five main frequencybands, Delta 

(𝜃), Theta (𝜃), Alpha (𝛼), Beta (𝛽) and Gamma (𝛾) and these frequency bands can be defined according to 

distribution over the scalp or biological significance[6]. Various components of ERP (e.g, P300 response, mu 

and beta rhythms, motor imagery and steady-state visual evoked potentials (SSVEP))has been introduced as 

input of BCI to control external devices (e.g., character selection [7-9], virtual object movement [10], image 

selection [11], cursor movement [12-15] and wheelchair navigation [16-20]) to assist physically challenged 

patients. 

The combination ofEEG with additional signal from EEG or other physiological sources such as EOG or EMG 

for real world applications are known as hybrid BCI[21].This strategy can improve the BCI performance, as the 

false positive from two sources would be needed for a misclassification to occur. The hybrid BCI is typically 

processed simultaneouslyor operating two systems sequentially with the first system can act as either a “brain 

switch” or as “selector”[22].It isdemonstrated that the combination of various ERP components could improve 

the classification accuracy of BCI[23]. In recent years, hybrid BCI is proposed to produce multiple control 

commands for applications.For instance, the P300 potential and motor imagery or SSVEP areincorporated to 

control the 2-D cursor and brain-actuated wheelchair[24, 25]. These systems provide multiple commands for 

multi-dimensional control such as controlling direction and speed.Simultaneously, hybrid BCI combined motor 

imagery and SSVEP signals havebeen established for control engineering [26, 27]. In this approach, the control 

commands are limited by a small number of classification categories. Moreover, Pfurtscheller et al. designed a 

motor imagery based brain switch for activating and deactivating their hybrid BCI system [28]. These hybrid 

BCIs achieve better control effect for external device control, but it still a challenge to design a hybrid BCI 

system for high-efficiency control.  

Generating P300, mu and beta rhythms,Steady State Visually Evoked Potential (SSVEP) and motor imagery 

signalsrequire a high degree of concentration and cancause difficulties to attain effective control ofhybrid 

BCI[29].In opposite, acquiring EOG signal is trivial and no special training is required to execute voluntary eye 

movement. For severely paralyzed patients, signals (e.g., EOG) tends to be stable with the exception of cerebral 

palsy [30]and multiple sclerosis [31].Therefore, a combination with other bio-signal (e.g., EEG) can provide a 

more efficient channel for interaction.For instance, Postelnicu et al. demonstrates that controlling a robotic arm 

is more easier and accurate using a combination of EEG and EOG rather than EOG alone [32]. Moreover, the 

implementation of this hybrid BCI can improve the response time when a selected command is given[33].This 

feature is important when astop command is sent to abrain controlled wheelchair, andthe wheelchair stopsas fast 

as possible after the command is received to avoid any collisions[34].Fatigue is unavoidablein a long-term use 

of hybrid BCI, thus Usakli et al. proposed a system to switches between P300 and EOG without learning a new 

user interface [35]. In hybrid BCI system, the contamination of ocular artifact remains a significant problem, 

specifically for the system that relies on eye movements as input.Since the EEG signals have always been 

contaminated by EOG artifacts,we employ these artifacts as a secondary input to our asynchronoushybrid BCI 

system. 

EOG artifacts in EEG signals generate high amplitude signals(i.e., larger in the frontal area and decrease rapidly 

towards the posterior area)[36]. In this study, we develop a hybrid BCIsystem that utilizes a combination of 

EEG alpha signal (8-13Hz) and EOG artifacts in delta band (<3Hz) as inputs to determine the user’s eyelid 

position and eyeball movement respectively. The alpha band signal is recorded from the occipital region while 

the delta band signals are obtained from the motor cortex. Features (e.g., variance and central tendency 

measurement (CTM))can be extracted from the EEG data in the window and utilizedto determine the eyelid 

position and eyeball movement by using thresholding. The data can also be utilized directly as inputs to a 

classifier (e.g., multilayer perceptron(MLP) or support vector machine(SVM)). MLP and SVM are common 

classifiers that have been utilized by many researchers to classify EEG or EOG signals[37, 38]. In the 

experiment, the classification performances of the thresholding, MLP and SVM classifiers are compared and 

presented in tables. 
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The paper is organized as follows. First, methodology of this work is presented. Then, signal processing and 

classification techniques employed in this work are elaborated. Subsequently, performed experiment results are 

discussed. Finally, conclusions and future works are outlined. 

2.0 METHODS 

The EEG data areacquired using g.Mobilab from Guger Technologies at a sampling rate of 256Hz. The gold 

electrodes are placed at C3, C4and O2 with reference connected to Cz and ground attached at forehead (FPz). 

The electrode arrangement followsthe International 10-20 montage system and the impedance ismaintained 

below 10kΩ. Since the experiment isconducted in unshielded room, the laptop and g.MOBIlabarepowered by 

battery to minimize electrical interference contamination in the EEG data. The EEG signals areacquired and 

analyzed using LabVIEW software from National Instrument. 

There are 20 healthy participants involved in this study, with age ranging between 23 to 27 years old. All 

participants arefree from any neurological disease and hasno prior experience with EEG recording. 

Theyarebriefed on the purpose and nature of the study and asked to sign a consent form before the EEG 

recording begin. The experimental procedure complies with the Declaration of Helsinski. 

2.1 Experimental procedure 

The study isconducted in two separate sessions,training and testing sessions. In the training session, EEG 

signalsarerecordedand analyzed to determine threshold values needed for sliding window,CTM and variance. 

The data are also utlizedfor training the MLP and SVM classifiers. Every participantperformes5trials for each 

instruction of horizontal eyeball movements (from center to left or right and the reverse) and eyelid position 

(open and closed). A total of 400 trials arerecorded for the horizontal eyeball movements and 200 trials for 

eyelid position from 20 participants. Each trial isrecorded in 10 secondsand15 seconds rest in between eyeball 

movements and eyelid position trials. 

 

Fig.1:(a) 6instructions of horizontal eyeball movements and eyelid position areassigned every 10 seconds in the 

testing session. The subject must respond accordingly within 5 seconds and no restriction of eye blinking during 

the experimental session. (b) Graphical user interface during the experimental session. 
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The testing session is conducted to test the efficiency of signal processing by usingthresholding and classifiers 

in real-time. Fig. 1(a) shows aninstruction is assigned in every 10 seconds. The subject is given 5 seconds to 

respond correctlyfor each instruction. In total, participants perform 400 trials for horizontal eyeball movements 

and 200 trials for eyelid positions. The performance of each participant is recorded and analyzed. 

2.2 Signal properties 

The filtered alpha signal in channel O2 shows a higher event related potential (ERP) fluctuation during eye 

closingcomparedto eye opening. The peak of the alpha signal is 5-10uV during eye openingand 20-50μV when 

eyesare closedas shown in Fig.2. However, the amplitude of the signal itself varies with individuals. The natural 

blink and eyeball movement that occur during eye opening are negligible in the alpha band at the occipital 

region [39]. Conversely, natural blink and vertical eyeball movement generate artifacts in delta band.These 

artifacts are larger in the frontal and decrease rapidly towards the posterior areas [36]. 

In this study, the horizontal eyeball movement is actually inferred from the delta signal in channel C3 and C4 

due to the minimal presence of blink and vertical eyeball movement. When the eyeball moves from the center to 

the right, a short positive pulse is observed in channel C4. At the same time, a weak negative pulse is noticeable 

in channel C3. Then, when the eyeball shifts from right to center, a long positive pulse is observedat channel C3 

and negative pulse at channel C4.The reverse characteristics can be observed during eyeball movement from the 

center to left and return to center.These signals are utilizedas inputs to a classifier to track changes in eyeball 

movement. 

 

Fig.2: The EEG signals areacquired at channel C3, C4, O2 with Cz as reference. In delta band (<3Hz), a short 

positive pulse is observed at channel C4 and negative pulse at channel C3 when the eyeball direction is moving 

from center to right. When the eyeball shifts from right to center, a longer positive pulse can be observed at 

channel C3 and negative pulse at channel C4. The reverse characteristics can be observed during eyeball 

movement from the center to left and return to center. In alpha band (8-13Hz) at channel O2, the closed eye 

exhibits more alpha signal activity in the occipital region. 
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3.0 SIGNAL PROCESSING AND ANALYSIS 

The signal processing schemefor the classification of eyelid position and horizontal eyeball movements is 

summarized in Fig.3. First, the O2 signal is processed by using Butterworth bandpass filter to capture alpha 

signal within 8-13Hz.Simultaneously, signal inchannel C3 and C4 are processed by usingButterworth lowpass 

filter to capture delta signal(i.e., remove all signal content in >=3Hz). Then, these signals are analyzed in a 

window of 128 samples for every 0.5 second, making two consecutive windows non-overlapping in 1second. 

 

Fig.3: Signal processing scheme for identification of eyelid position in alpha band (8-13Hz) at O2 and 

horizontal eyeball movements in delta band (<3Hz) at C3, C4.Performances of the classification are compared 

between classifiers and thresholding scheme. 

3.1 Sliding window 

When monitoring the alpha signal inchannel O2, a conventional window frame capturesthe signal amplitude in 

transition from low to high when the open eyes are just about to closeand vice versa.Consequently, samples in 

the window are the mixture of closed and open eyes as showed inFig.4(b).Therefore, a non-rigid sliding window 

is utilizedto shift the position of thewindow so that it onlycontain samples of closed or open eyes exclusively. 

For O2 signal, the sliding window is adjusted as follows 

 

Fig.4: (a), (b) The conventional window will lose part of the crucial features in the signal. Insufficient 

information in a window will lead to misclassification. (c), (d) Sliding window will automatically adjust its 

position so that the full cue is captured within its interval. 
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Fig.5: The process to shift position of sliding window. The threshold_alpha is set at half of the average of the 

absolute values in a window during closed eye. If O2 window is adjusted, the C3 and C4 window will follow its 

position. Otherwise, the O2 window will follow the position of the C3 or C4 window. 

 

Initially, the absolute values of 128 samples in a window are calculated. Then, these values are divided into 

eightnon-overlapping subintervals containing 16 samples. Next, the sum of the absolute values of data are 

calculated and averaged in the first and last subintervals. The window is shifted to the right by 16 samples if the 

difference between first and last subintervalsexceeds a threshold (called threshold_alpha)and repeated the 

shifting step until the difference is less than the threshold_alpha. Once the window stop shifting, the samples 

(data) will be utilized to classify eyelid position. The threshold_alpha is set at half of the average of the absolute 

values in a window during closed eye, as shown in Eq. (1). Threshold_alphais utilized particularly to reposition 
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the window in channel O2. The total sample of 128 in a window is denoted by 𝑁 while the 𝑥𝑖  represents the 

discrete data at i-th sample in a window. 

𝑡𝑟𝑒𝑠𝑜𝑙𝑑_𝑎𝑙𝑝𝑎 =  
1

𝑁
  𝑥𝑖  

𝑁

𝑖=1

 2  (1) 

 

For C3 and C4 signals, the window position is shifted so that the data with the maximum amplitude will be at 

the center of the window.The absolute value of the C3 sample is added to the absolute value of C4 samplefor 

each position in the window. Then, the sample with the maximum sum is identified and positioned at the center 

of the window. The procedure to adjust the window position is illustrated in Fig.5. When O2 window is 

adjusted, the C3 and C4 window will follow its position. Otherwise, the O2 window will follow the position of 

the C3 or C4 window. In short, adjustment to the position of the O2 window takes precedence over that of the 

C3 and C4 window. 

3.2 Eyelid position and eyeball movement analysis 

In classification, the alpha signal from O2 is analyzed to ascertain the eyelid position of open and closed eyes. If 

the eyes are open, the eyeball direction is determined from the delta band in C3 and C4. Variance and CTM 

features are extracted from EEG data and utilizedas input forthresholding, while MLP and SVM classifiers will 

directly utilizedthe filtered EEG data. These techniques areselected based on their low computational 

complexity and performance reported in the previous studies [40, 41]. All the threshold values and classifiers 

are determined and trained uniquely with individual’s recorded EEG data.  

3.2.1 Variance 

Variance (σ
2
) is a variability measurement of data set from mean andexpected value. The variance of unknown 

distribution can be computed as in (2)by taking account of mean (μ), number of sample (N) and value of each 

sample (𝑥(𝑡)). 

 

𝜎2 =
1

𝑁
  𝑥(𝑡) − 𝜇 2

𝑁−1

𝑘=0

 
(2) 

 

The variance is highwhen the differences between samples are more spreaded out [42]. In eyelid position 

analysis, a threshold (i.e., variance_closed)isset at half of thevariance average for closed eyessignals in channel 

O2 as described in (3). The variance average of closed eyes signals is computed from five closed eyes trials (𝑇𝑟) 

recorded for each participant during the training session. For each trial, the variance at sample k-th (𝜎𝑘
2)is 

average over the total samples in a trial (N). The alpha signal from a particular window in channel O2 is 

classified as open eyes if the calculated variance isequal or smaller than the variance_closed. Whereas, larger 

variance is classified as closed eye. 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑐𝑙𝑜𝑠𝑒𝑑 =  
1

𝑇𝑟
  

𝜎𝑘
2

𝑁

𝑁−1

𝑘=0

𝑇𝑟

𝑖=1

 2  
(3) 

 

In the eyeball movement analysis, eyeball directions are determined from four thresholds, variance_rightcenter, 

variance_left, variance_leftcenter and variance_right as shown in Fig.6. These thresholds are computed from 

the mean variance of the eyeball movement over trials from the recorded data using the same principle as in (3). 

The values for variance_rightcenter and variance_leftare calculated from the delta signals in C3 while 

variance_leftcenter and variance_rightare calculated from the delta signals in C4. When the open eye is 

detected, variance_rightcenter and variance_leftcenter identifies whether the eyeballs are at stationary or 

moving mode. If the eyeballs are moved, the gaze direction will be determined from variance_left 
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orvariance_right.In the case of exceeding these thresholds, center-to-left or right movement is 

detected.Otherwise, return to center movement is detected.  

 

Fig.6: Five threshold values are utilized to determine the eyelid position and eyeball movements. Analysis for 

C3 and C4 are done simultaneously. 

3.2.2 Central tendency measurement (CTM) 

Second-order difference plot displays the successive rates of variability against each other where  𝑥 𝑛 + 1 −
𝑥 𝑛   is plotted against  𝑥 𝑛 + 2 − 𝑥 𝑛 + 1  . The scaling factors of second-order difference plot increase as 

the sampling frequency increase. Therefore, higher frequency components have wider data spreading on x, y 

plane compared to lower frequency components. The CTM measures the variability in the second-order 

difference plot by counting the points (𝑥) within the radius (𝑟) and dividing by the total numbers of points (𝑛) as 

describe below in (4) and (5): 

 

CTM =
 𝛿 𝑑𝑖 

𝑛−2
𝑖=1

𝑛 − 2
 (4) 

𝛿 𝑑𝑖 =  
1  𝑖𝑓    𝑥 𝑖 + 2 − 𝑥 𝑖 + 1 2 +  𝑥 𝑖 + 1 − 𝑥 𝑖  2 0.5 < 𝑟

0  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

(5) 

where, 𝑖 = samples 

The CTM value represents the fraction of the total points lie within the radius without distinguishes between 

sign. The optimum radius ischosen when CTM reaches a value of 0.90 to avoid spurious high frequency noisy 

components at highradius value [40], i.e., the transient signal due to the filtering performed to extract the alpha 

band signal as depicted in Fig.7.Then, the radius difference,𝑟𝑑  can be defined in (6) for eyelid position analysis: 

 

𝑟𝑑 = 𝑟 0.90, 𝑒𝑦𝑒_𝑂2 − 𝑟𝑚𝑒𝑎𝑛  0.90 𝑜𝑝𝑒𝑛  
(6) 
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Fig.7: The transient signal due to the filtering performed to extract the alpha band signal causesthe noisy 

components at larger radius value in 2
nd

 order differential plot. 

 

 

 

The mean value of open eyes radius, 𝑟𝑚𝑒𝑎𝑛  0.90 𝑜𝑝𝑒𝑛 iscalculated over collected data. The classification of 

open and closed eyesisbased on the sign of 𝑟𝑑  value from (4). The alpha rhythm of the closed eyes contains 

higher variability compared to open eyes, thus, the positive value of 𝑟𝑑  yields closed eyes condition while 

negative value yields open eyes condition. 

If the open eyes is detected, the proses to determine gaze direction will continue by analyzing delta signal in C3 

and C4. First, the radius difference between signals in C3 and C4 is calculated as defined in (7). 

 

 

𝑟𝑑 = 𝑟 0.90, 𝑒𝑦𝑒_𝐶3 − 𝑟 0.90, 𝑒𝑦𝑒_𝐶4  (7) 

 

If the value of 𝑟𝑑  is positive, the signal in C3 is utilized to determine eyeball movement as no movement, center-

to-left and right-to-center. Otherwise, signal in C4 isutilized in the analysis. The values of 

𝑟𝑚𝑒𝑎𝑛  0.90 𝑟𝑖𝑔𝑡𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑟𝑚𝑒𝑎𝑛  0.90 𝑙𝑒𝑓𝑡𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑟𝑚𝑒𝑎𝑛  0.90 𝑙𝑒𝑓𝑡 , 𝑟𝑚𝑒𝑎𝑛  0.90 𝑟𝑖𝑔𝑡 are computed over 

radius of eyeball movements from the recorded data. These thresholds are compared with the calculated radius 

of unknown eyeball movements for classification as illustrated in Fig.8.  
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Fig.8: Three mean radiuses when CTM reaches a value of 0.90 areutilized to determine the eyelid position and 

eyeball movements. 

 

3.2.3 Support vector machine (SVM) 

An SVM is a supervised binary classifier that utilizesa decision function to split the data into two classes. 

Graphically, the decision function can be visualized as a hyperplane separating the classes. In our experiments, 

Fig. 9 shows five SVM classifiers are utilizedto classify the eyelid position and eyeball direction changes and 

for all SVMs, quadratic function is utilizedas the kernel. The gamma parameter for the SVM is set at the default 

value, which is the reciprocal of the number of inputs (in this case it is 1/128).As a supervised classifier, an 

SVM requires training and signals from the recording session areutilizedto train the SVMs. A total of five 

SVMs areutilizedto classify eyelid position and eyeball movement. The first SVM decides open eyes and closed 

conditions using the O2 data. Then, the second SVM takes the C3 and C4 data as inputs to identify whether the 

eyeballs move or remain stationary. If the eyeballs move, the third SVM classifies the gaze direction movement 

into two classes (i.e., center to corner or corner to center). The fourth SVM divides the center to corner class 

into center-to-left and center-to-right classes. Finally, the fifth SVM splits the corner to center class into right-

to-center and left-to-center classes. 
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Fig.9: The classification steps to classify the eyelid position and the eyeball movements in SVM. 

 

3.2.4 Multilayer perceptron (MLP) 

MLP is a feedforward artificial neural network model. It creates a model tomap the input to the output based on 

the historical data. Fig.10 illustrates a perceptron network with an implemented hidden layer in this study. 

 

Fig.10: (a) The input layer consists of 128 neurons from O2 signal in a window.If the open eye condition is 

detected, the analysis decides the direction of eyeball movements. (b) This network has 256 input neurons 

consists of signals from C3 and C4 channel, one hidden layer with eight neurons and five output neurons 

representing five eyeball movements. 

 

The number of nodes in the input and output layers of the MLP are dictated by the number of input features and 

output classes respectively. We utilize a single hidden layer with eight nodes and this ad hoc decision is made 

prior to the testing session. First, the input layer consists of 128 neurons from O2 signal in a window. The 



Classification Of Eyelid Position And Eyeball Movement Using Eeg Signals.  pp 28-45 

39 

Malaysian Journal of Computer Science.  Vol. 28(1), 2015 

hidden layer contains eight neurons and connects to two neurons in output layer that represents open and closed 

eye condition. If open eye condition is detected, the analysis decides the direction of eyeball movements. The 

input layer consists of 256 neurons for the input data from C3 and C4 signals. They are connected to eight 

neurons in the hidden layer. In turn, the eight neurons are connected to five neurons in output layer. Finally, the 

MLP classifies the inputs into five classes of eyeball movements. Signals from the recording session areutilized 

to train the network using backpropagation algorithm with learning rate at 0.2 and 5000 iterations. 

4.0 EXPERIMENTAL RESULTS & DISCUSSION 

In this study, the evaluation metrics of accuracy, sensitivity and specificity are determined from the true positive 

(TP), true negative (TN), false positive (FP) and false negative (FN) to assess the performance of classification 

techniques.A true positive (TP) is defined as an expected eyelid position or eyeball movement is correctly 

detected during the experiment. If no detection occurred, the classification output is considered as a false 

negative (FN) or mistakenly detects as open in eyelid position or no movement in eyeball movement. This is 

because during open eye (channel O2) and no movement (channel C3 and C4), there are no significant changes 

can be observed in the respective signals. Therefore, if this condition is expected, the classification output is 

considered as a true negative. However, if the window interval is detected as other from the aforementioned 

condition, the output is labeled as false positive (FP) or incorrectly classified.The accuracy represents the 

percentage of correct decisions while sensitivity and specificity represent the ability toidentify correctly and 

exclude the condition respectively. These evaluation metrics are computed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10) 

 

4.1 Thresholding using variance and CTM features 

The efficiency of thresholding and classifiers are evaluated in real-time based on a single test. When a 

participant performing a task, a window of 128 samples is fed to these techniques simultaneously and their 

performancesare recorded.In total, the participants perform 400 trials for horizontal eyeball movement and 200 

trials for eyelid position. The outcomes of the testing session using thresholding and classifiersare outlined 

inTable 1 and Table 2 respectively. 

Variance feature records the highest overall accuracy of 96% with computational time of 0.52s in classification 

using thresholding. The thresholding of variance_closedis utilized to separate the variance into two classes, 

open and closed eyes in channel O2. In C3 and C4, two thresholds are utilized for each channel to separate the 

variance into three classes, no movement, center-to-left or right and return-to-center. These thresholds value are 

utilized for one user is different from another. For example, the variance_closed for one of the participant is set 

at 189 represented by a straight line as shown in Fig.11(a). 
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Table 1: Performance of the thresholding using variance and CTM features for eyelid position and eyeball 

movement classification during testing session. 

Task  
Variance 

 
 

 
CTM 

 
Accuracy Sensitivity Specificity  Accuracy Sensitivity Specificity 

Eyelid Position 
   

 
   

Open 0.97 0.95 0.98  0.92 0.91 0.92 

Closed 0.98 0.96 0.99  0.95 0.94 0.95 

Eyeball Movement 
  

 
   

Center-to-Left 0.97 0.96 0.97  0.91 0.91 0.92 

Center-to-Right 0.96 0.95 0.98  0.91 0.91 0.92 

Left-to-Center 0.94 0.93 0.96  0.88 0.6 0.89 

Right-to-Center 0.93 0.93 0.95  0.87 0.86 0.9 

No Movement 0.98 0.97 0.98  0.85 0.83 0.87 

Mean 0.96 0.95 0.97  0.90 0.85 0.91 

Computational Time  0.52s    0.83s  

 

 

 

Fig.11: Thresholds set for one of the participant during the testing session. (a) Variance during open and closed 

eye. The variance_closedis represented by a straight line at 𝒚 = 189 parallel to 𝒙-axis. (b), (c)The 

variance_rightcenterand variance_left are utilized in C3 to separate the variance into three classes, no 

movement, right-to-center and center-to-left. 

In measuring CTM for eyelid position and eyeball movement classification, x[n+1]-x[n] is plotted against 

x[n+2]-x[n+1] as depicted in Fig.12. CTM quantifies the degree of variability in second-order difference plot 

from the ratio of the number of points that fall within a circle with radius (𝑟) over the total numbers of points 

(𝑛). This variation ismeasured within an optimum radius, r that determines once CTM reaches a value of 

0.90.The optimum radius chosen is 0.90 as suggested in [40] to avoid spurious high frequency noisy 

components at larger radius value. 
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Fig.12: Second-order difference plot in a window of 128 samples during (a) open eye, (b) closed eye,(c) no 

movement and (d) center-to-right. 

 

A narrow distribution is observed for open eye and a wider distribution for closed eye.  In Fig. 13(a), result 

shows in smaller radius for open eye and larger radius for closed eye to reach CTM value of 0.90. CTM has 

denoted to low overall accuracy of 90% with computational time 0.83s. The analysis of CTM utilized the time 

series signals in alpha and delta band to calculate the radius of its variation without amplification. For example, 

in the case when oscillatory of alpha band islow in amplitude during closed eye, a small differences between the 

mean r(0.90, open) and r(0.90, closed)  makes it hard to differentiate between the two classes. 

4.2 Classifiers using MLP and SVM 

MLP utilizes supervised learning (i.e.,backpropagation) to create a model from the data during training. The 

data must be assigned to the respective group at the beginning of the analysis. Then, the MLP assigns the new 

data to number of groups based on a predetermined model. Table 2 shows that MLP has an average accuracy of 

96% and it requires approximately 0.92s for classification.In opposite, SVMs score an average accuracy of 

0.98% successive rate during the testing session with approximately 0.53s.In the case of misclassification, class 

right-to-center is identified as center-to-left and left-to-center is identified as center-to-right. This is also true for 

misclassification of center-to-right identified as left-to-center and vice versa.  

 

Fig.13:The optimum radius during eyelid position at (a)r(0.90, open) = 2.97, r(0.90, closed) = 9.12,and eyeball 

movement at (b) r(0.90, no movement) = 0.2, r(0.90, center-to-right) = 0.62are determined when the CTM value 

reaches 0.90. 

 

The eyeball movement from center to right produces the same positive pulse in C4 and negative pulse in C3, 

i.e., gaze movement from left to center but vary in strength. However, when subjects are fatigue, the pulse 
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strength decreases when center-to-right movement is executed, at the same time, the weak pulse represents left-

to-center eye gaze.Therefore, the classifiers mistakenly classify the center-to-right as left-to-center. Overall, 

SVMs produces the highest accuracy rate compare to other thresholding and classifier techniques. 

 

Generally, the factor that contributes to the error is mainly due to the speed of eyeball movement. Low speed of 

eyeball movementgenerates weak pulses in C3 and C4 andit is difficult to be detected. These errors are caused 

by fatigue, lack of focus and familiarity, disturbance and confusion.In eyelid position analysis, the errors occur 

when the ERP of alpha band increases in amplitude due to relaxation and fatigue[43]. 

Table 2: Performance of the classifiers using MLP and SVM for eyelid position and eyeball movement 

classification during testing session. 

Task  
MLP 

 
 

 
SVM 

 
Accuracy Sensitivity Specificity  Accuracy Sensitivity Specificity 

Eyelid Position 
   

 
   

Open 0.96 0.94 0.97  0.99 0.98 1 

Closed 0.97 0.95 0.97  0.98 0.97 0.98 

Eyeball Movement 
  

 
   

Center-to-Left 0.94 0.93 0.95  0.97 0.97 0.97 

Center-to-Right 0.95 0.93 0.96  0.97 0.96 0.97 

Left-to-Center 0.95 0.94 0.96  0.99 0.99 0.98 

Right-to-Center 0.95 0.94 0.95  0.98 0.98 0.98 

No Movement 0.97 0.96 0.98  1 1 1 

Mean 0.96 0.94 0.96  0.98 0.98 0.98 

Computational Time  0.92s    0.53s  

5.0 CONCLUSIONS 

In this study, EEG and EOG signals are utilizedfor the eyelid positioning and eyeball movements respectively in 

real-time experiments. The eyelid position is determined by the alpha signal in O2 while the gaze direction is 

inferred from delta signals in C3 and C4, which contains traces of horizontal eyeball movement. A sliding 

window is utilizedto capture important cues in the EEG signals for effective classification. Variance and CTM 

features are extracted from EEG data in the window and utilizedto determine the eyelid position and eyeball 

movement byusing thresholding. These data are utilized directly as inputs to MLP or SVM classifiers. The 

performance of both thresholding and classifications are computed and evaluated in real-time based on thetotal 

600 signals of eyelid position and eyeball movement. Variance feature scores highest overall accuracy of 96% 

with computational time of 0.52s for classification using thresholding, while SVM scores0.98% successive rate 

with computational time of 0.53sfor classification using classifier. Overall, SVM records the highest accuracy 

rate compare to other features by using thresholding and classifier techniques. From the classification result, the 

movementdirection of the eyes can be implied and utilizedto control a BCI system. The system has the potential 

to be utilizedin a practical applicationsuch as cursor positioning and wheelchair navigation. 
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