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ABSTRACT 

 

In video forensics, the low resolution of the facial information inside the video evidence is found to be the leading 

cause of the low performance of the facial identification system. Therefore, the super-resolution method is commonly 

used to recover low-resolution facial information inside a photo or a video to a higher resolution. However, in the 

current state, image resizing, especially super-resolution methods, cannot enhance the resolution of facial information 

with good quality at high magnification factors. This paper proposes a new forensic face identification based on the 

face hallucination technique with sparse representation. The proposed method, Sparse Resolution (SR), is a single-

frame method that uses a representation of a signal with linear combinations of small elementary signals. These 

signals are then interpolated to synthesize low-resolution signals at a higher resolution. The signals are chosen via 

sparse coding from an over-complete dictionary with trained images. The active Appearance Model (AAM) and 

Support Vector Machine (SVM) were subsequently used to extract features and classify data. The experimental results 

test the SR face images on two datasets: (1) 14 individuals collected via CCTV surveillance Digital Video Recorder, 

and (2) the 2.5D partial images produced by a forensic facial identification system. The experiments show that the SR 

produced promising results. Also, the AAM-SVM facial matching results show that the SR images get higher matching 

performance than other state-of-the-art methods. 

 

Keywords: Digital Forensic; Super resolution; Hallucination; Sparse coding. 

 

1.  INTRODUCTION 

 
Ongoing development in electronics, optics, and sensors has influenced the extensive availability of monitoring 

systems and video-based surveillance. Applications (diversified from security to broadcasting) are moving the 

necessity forward to recognize individuals better from the number of surveillance videos [1]. This necessity imposes 

new difficulties on face recognition, which is already challenging. Cameras are generally at an optimum distance from 

the subject in a typical surveillance scenario [2]. Image resolution is a significant factor for many systems of 2D face 

recognition (FR), which affects the ability to detect essential elements in facial anatomy (e.g., lip, eyes, facial contours, 

lip corners) [2]. In the video exhibit for a human observer, a necessary forensic analysis is object enhancement to 

improve the object clarity. The clarified object is important because it is used to help investigate law enforcement 

agencies and is presented as evidence in court.  Moreover, a ‘probe’ or an enhanced object is also used for other 

analyses like object identification, face recognition, and spectrogram. Challenges encountered in this field of forensics 

are mainly attributed to the exhibit’s quality. For instance, surveillance videos are kept backed up in the CCTV system 

through the down-sampled resolution. With color noise, illumination problems, signal noise, and different sorts of 

blurring, the performance of the recording has always been found to be demoted [3]. Plenty of dead ends occurred in 
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the video forensic analysis due to these demotions. Thus, the court rejects or challenges forensic investigation reports 

because insufficient evidence is presented. 

 

The signal-to-noise ratio (SNR) and mean-squared error (MSE) between the reconstructed SR image and the initial 

high-resolution (HR) image have been optimized in many super-resolution (SR) attempts. [4]. Nevertheless, these SR 

attempts may not perform satisfactorily in face recognition because most FR systems depend on the abilities of major 

features of facial identification, generally captured by high-frequency contents. Since the high-fidelity reconstruction 

of low-frequency contents may dominate images, having a higher SNR does not lead to a greater recognition rate. To 

increase low-resolution images and transform photos into sketches or sketches into photos for subsequent usage, face 

hallucination (FH) techniques can be utilized. It is widely recognized that FH can generate information or imagery 

from the input source face image, but with different modalities (style, imaging modes, or resolution) [5]. To reduce all 

these challenges and enhance the forensic analysis work, a new face identification method based on the face 

hallucination technique with sparse representation is introduced in this paper.  

 

Despite advancements in face recognition technologies, accurately identifying individuals from low-resolution 

surveillance footage remains a critical challenge in forensic investigations. Conventional super-resolution techniques 

often fail to recover discriminative facial features necessary for identification, especially under extreme resolution 

degradation. Therefore, there is a pressing need for robust image enhancement strategies that can reliably reconstruct 

high-quality facial images from severely degraded inputs. 

 

This paper has been organized into five sections. Section two presents the related works of single-frame super-

resolution and multi-frame super-resolution. Next, we discuss the proposed face identification technique. We test and 

verify our work compared to the state-of-the-art method in Section 4. Finally, the conclusions from this work are 

summarized in the last section. 

 
2.  RELATED WORKS 

 
As seen in the reference image, the definition of super-resolution is based on using an individual image or multiple 

images of the same scene or object to produce a higher-resolution image through minimal aliasing. The related works 

for the multi-frame, single-frame super-resolution and deep learning-based methods in SR are reviewed in the sub-

sections below.  

 
2.1 Multi-Frame Super Resolution 

 

The technique of producing an image of high resolution (HR) from several images of low resolution (LR), or video 

frames, from the original scene is known as multi-frame image super-resolution (SR). The idea of image super-

resolution was first introduced by [6]. The authors proposed a frequency domain formulation for reconstructing a 

band-restricted image based on the shift and aliasing properties of continuous and discrete Fourier transforms. This 

algorithm was given a noisy data extension by [7], resulting in a weighted least squares algorithm for computing the 

high-resolution estimate. Again, [8] used the Tkhonov regularization to solve an inconsistent series of linear equations 

by considering different amounts of blur for each low-resolution picture.  The connection between the LR and HR 

images is illustrated in the frequency domain, a remarkable benefit of the frequency domain approaches discussed 

above. The observation model, on the other hand, is limited to global translational motion and linear space invariant 

blur.  

 

The most intuitive method for SR reconstruction is based on a non-uniform interpolation approach [3], [4]. Using the 

generalized multi-channel sampling theorem, [15] performed no uniform approximation of an aggregate of temporally 

shifted LR images to obtain a higher resolution image. The [15] authors proposed a weighted nearest neighbor 

interpolation method. They developed a real-time infrared image registration technique and SR reconstruction using 

a gradient-based registration algorithm for estimating shifts between acquired frames. However, these approaches are 

limited to a global translational displacement between the measured image and an LSI blur and homogeneous additive 

noise in one of two ways. A multiple-frame Super-Resolution technique was demonstrated by [3], which involved 

merging a series of video frames of a subject to generate a super-resolved frame of improved resolution and clarity. 

They used the Projection onto Convex Sets (POCS) process for the super-resolution. Keren was used to estimate the 



                         

 

3 

 

shift and rotational parameters of the frames for the POCS. On the other hand, multiple-frame SR is not compatible 

with the enhancement analysis. Furthermore, the multiple frames super-resolution is hard to adapt due to varying video 

frame rates and duplicated frames.  

 

Numerous real-world forensic cases have highlighted the limitations of current image enhancement methods. For 

instance, in several high-profile criminal investigations, including urban surveillance-based identification and ATM 

fraud, authorities were unable to positively identify suspects due to the poor quality of available footage. These failures 

underscore the critical importance of developing more advanced face hallucination methods to reconstruct clear, high-

resolution facial images suitable for recognition and legal use. 

 
2.2 Single-frame super resolutions 

 

Single-frame and real-time super-resolution have been developed in recent years. Patch-based upsampling, example-

based super-resolution, and texture hallucination have all been used in recent work on single-image super-resolution 

[9], [10], [11]. In [11], the authors present a super-resolution algorithm of a single image built on both the wavelet and 

spatial domains and exploits both. The iterative algorithm employs back projection to reduce reconstruction error. A 

wavelet-based de-noising approach is also introduced to minimize noise. The drawback of a single-frame SR in 

comparison with multiple-frame SR is that it lacks the variety of spatial-frequency pass-bands from the camera to 

form a good high-resolution image. On the other hand, multiple-image super-resolution has pass-bands that can be 

acquired from one image to another in the sequence. These acquired pass-bands are then superimposed to synthesize 

a high-resolution image. With sparse representation, these drawbacks can be solved by training samples of good 

images as a reference or dictionary to supplement the lost spatial frequency. 

 
2.3 Super-Resolution Enhancement in Forensic Facial Identification 

 

Wheeler has discussed the idea of Super-Resolution in enhancing CCTV surveillance video, especially for forensics 

purposes. [3], [12] In these papers, Wheeler [3], [12] discussed the application of Super-Resolution in restoring facial 

images for face recognition in forensic analysis. He also discovered the Wiener Deblurring filtering technique by 

considering possible Point Spread Functions (PSF) to reverse the video degradation's noise and blurring aspect. Figure 

1 shows the process of Super-Resolution enhancement in 2.5D forensic facial identification initiated and modified 

from [3], [12] studies for ‘Tepuk Bahu Case’ in Malaysia. 

 

Fig. 1: The Super-Resolution enhancement in 2.5D forensic facial identification initiated and modified from [3], 

[12] for ‘Tepuk Bahu Case’ in Malaysia. 
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2.4  Deep Learning-Based Versus Frequency-Based SR Method in Facial Recognition 

 

Recent Super-Resolution (SR) advancements for facial recognition have significantly improved image enhancement 

techniques. Traditional methods such as SRCNN [1] [13]and VDSR[2] [14] utilize deep convolutional networks to 

reconstruct facial details from low-resolution images, while generative adversarial networks (GANs), exemplified by 

SRGAN, generate realistic textures but face training instability [15] Unsupervised approaches like CycleGAN enable 

SR without paired datasets, broadening applicability but often leading to structural inconsistencies in facial 

reconstruction [16]. Recurrent neural networks (RNNs), such as RBPN, leverage temporal dependencies for video SR, 

enhancing frame continuity but requiring substantial computational resources [17]. Attention-based models like SAN 

focus on critical image regions, refining facial features with higher accuracy at the cost of increased computational 

demand [18]. Wavelet-based approaches, including WRAN, incorporate spatial and frequency-domain information to 

improve detail preservation [19]. More recently, transformer-driven SR models have gained traction for efficiently 

capturing global contextual features [20] diffusion-based SR techniques generate a high-resolution image through 

probabilistic modeling [21]. These advancements collectively enhance perceptual quality, computational efficiency, 

and adaptability in real-world facial recognition applications, as summarized in Table 1. 

 

Table 1: Key Benefits and Limitations of Super Resolution for facial recognition applications. 

 

Method Dataset Approach Complexity Efficiency Key Benefits Limitations 

SRCNN 

Dong et al. 

[13] 

Set5, Set14, 

and T91  

Supervised 

CNN 
Moderate High 

Simple architecture, 

effective for basic SR 

tasks  

Limited feature 

extraction, struggles 

with complex 

textures  

VDSR 

Kim et al. 

[22] 

Set5, Set14, 

and BSD100 
Deep CNN High Moderate 

A deeper network 

improves detail 

recovery.  

High computational 

cost  

SRGAN 

Ledig et al. 

[3] 

COCO 

Set5 and 

Set14 

GAN-based Very High Low 

Generates realistic 

textures, enhances 

perceptual quality  

Training instability, 

potential artifacts  

CycleGAN 

Zhu et al. [16] 

Unpaired 

datasets 

image-to-

image 

translation  

Unsupervised 

GAN 
High Moderate 

No need for paired 

datasets, flexible 

domain adaptation  

Structural 

inconsistencies in 

image 

reconstruction  

RBPN 

Haris et al. 

[17] 

Vimeo-90K 

and Vid4 

Vid4 

Recurrent 

Neural 

Network  

Very High Moderate 

Leverages temporal 

dependencies for 

video SR  

Requires significant 

computational 

resources  

SAN 

Dai et al. [18] 

Set5, Set14, 

and 

Urban100 

Attention-

based 
High High 

Focuses on important 

image regions, 

improves feature 

refinement  

Computational 

overhead  

WRAN 

Li et al. [19] 

BSDS100, 

Set5, and 

Set14 

Wavelet-

based 
Moderate High 

Captures spatial and 

frequency 

information  

Requires careful 

tuning of 

transformation 

parameters.  

Transformer

-Based SR 

Dutta et al. 

[20] 

DIV2K and 

Urban100 

Deep 

Learning 

Transformer 

High High 

Improves global 

feature extraction, 

enhances facial 

details  

Requires large-scale 

datasets for training  

Diffusion-

Based SR 

Moser et al. 

[21] 

DIV2K 
Probabilistic 

Model 
Very High Moderate 

Generates high-

resolution images 

with superior 

perceptual quality  

Computationally 

expensive, slow 

inference  

 

While existing methods provide valuable insights into super-resolution strategies, they often fall short when applied 

to forensic contexts due to their inability to recover fine-grained identity-specific features from highly degraded inputs. 
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This shortcoming motivates the present study, which introduces a Sparse Resolution (SR) framework leveraging 

sparse coding and facial priors to achieve superior reconstruction quality. By focusing on the structural and statistical 

patterns unique to human faces, the proposed method addresses these limitations head-on and provides a more reliable 

tool for forensic image enhancement.  

 

In summary, prior research has predominantly focused on general-purpose SR techniques without tailoring 

reconstruction processes to facial features critical for identification. Additionally, forensic-specific evaluations are 

lacking under realistic constraints such as low frame rates, variable lighting, and extreme poses. Furthermore, limited 

attention has been given to scenarios involving partial or occluded faces—common occurrences in surveillance 

footage. These gaps reveal a need for specialized face hallucination models that can function reliably in forensic 

applications. 

 
3.  THE PROPOSED METHODOLOGY 

 

The proposed Sparse Resolution (SR) framework sets itself apart from conventional SR techniques by integrating 

sparse coding with an over-complete dictionary trained specifically on facial features. Unlike existing interpolation-

based or frequency-domain approaches, SR focuses on learning the intrinsic structures of human faces, enabling more 

accurate reconstructions under low-resolution and forensic constraints. This targeted learning mechanism makes the 

proposed approach uniquely suited for enhancing surveillance video frames where facial features are often distorted 

or incomplete.  

 

In this section, the proposed methodology in this paper is classified into four phases: (i) Forensics facial Identification 

SOP, (ii) the proposed Sparse Resolution (SR) method, (iii) feature extraction using AAM modeling, (iv) identification 

phase. The four phases of the proposed methodology are discussed in Sections 3.1 until 3.4.  

 
3.1 Forensics Facial Identification Standard Operating Procedure (SOP) 

 

In forensics, facial recognition is a method that adheres to a set of specific standard operating procedures (SOPs) to 

produce a clear and succinct examination result for use in court. As a result, when storing, extracting, evaluating, and 

presenting information about digital media as possible evidence, an observer follows a technique to demonstrate 

impartiality. The Forensic Facial Identification SOP ensures the systematic handling of facial imagery throughout the 

enhancement and identification pipeline. It involves pre-processing, face detection, low-resolution input 

standardization, and SR-controlled reconstruction. These protocols maintain consistency in forensic practices and 

support the reproducibility and reliability of the proposed method across various investigative contexts. Figure 2 shows 

the forensics process, from obtaining the display to analyzing it and presenting the case to the court.  
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Fig. 2: The forensics methodology 

 
The method of collecting firsthand information about the crime scene, the premise, the individual in charge, and the 

different types of CCTV systems is known as identification or planning. All details collected at this stage must be 

saved to create a plotline in court later. The next move is to collect or acquire digital media based on the circumstances 

and applicability. The digital media, or display, is analyzed in a closed environment to achieve the case target. Finally, 

the court is confronted with the results of the report. From the point it is taken to the point it is returned, the exhibit 

must be securely stored so that no or limited tampering occurs during the process. 

There are three stages to the facial recognition process: 1) preparation of the probe, 2) enrollment of the population, 

and 3) process of facial identification. The probe image for the test is created in the first step by selecting video frames 

with the highest quality possible facial information. The most important criteria for the selection are: 

1. The best frontal face posture: all facial features are visible. Since the recognition system enrolls full frontal faces, 

partial faces are not chosen for study. Regarding facial posture and orientation, there is a limited tolerance as 

long as all fiducial characteristics are present. 

2. The size of the face in the exhibit video should be at or above 100 by 100 pixels in native resolution. Image 

resampling of not more than five enlargements is needed for resolutions lower than this, based on the resampling 

performance quality. Increased resampling of video frames can result in "hallucinations," in which facial data is 

demoted for recognition.  

3. If the facial data in the video is still not precise, the quality of video frames should be sufficient to show all facial 

characteristics with minor enhancements. 

Following the selection of the best frames with the best condition of facial detail, the process moved on to frame 

extraction and enhancement using a variety of algorithms for image processing. After that, images with face probes 

are clipped and used in the identification process. 

 

Population Enrollment is the next step in the process. Since the recognition process is one-to-many, a collection of 

population face databases will be prepared for facial identification to function. A population of less than 1490 people 

is used for a data training sample. For the population, only the complete frontal face picture is used. A collection of 

suspect face images is included in the population. During enrollment, picture quality is once again a primary concern. 

Applying the probe image degradation factors to the population is best practice. As a result, a set of algorithms for 

image processing should be devised to fit the image quality of the population to that of the probe. In forensics, the 

enrollment step is close to that of biometrics, in which all images are subjected to feature extraction processes and 

storage. Our work requires the recognition of fiducial landmarks, which are then used to form multiple 2.5D Active 

Appearance Models (AAM). These facial instances will then be used in the matching process. 
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Eventually, probes will be compared with the enrolled population database during the facial identification process. 

The fiducial landmarks will be manually determined first, and then many 2.5D instances will be created from there. 

The search and match will be performed in stages, depending on what other instances are generated from the probes 

and enrollment. To the probe, the two outcomes will be the identity match and the False Match Error Rate (FMER) of 

that matched identity. The proposed 2.5D Facial Identification processes discussed are shown in Figure 3. 

 
 

Fig. 3: The Detailed Proposed 2.5D Facial Identification Process initiated from Fig 1.  

 

 
3.2 The proposed Sparse Resolution (SR) method 

 

Sparse Resolution (SR) is based on the principle that any low-resolution facial image can be represented as a sparse 

linear combination of high-resolution facial patches from a learned dictionary. Instead of relying on pixel interpolation 

or frequency transformation, the method searches for the best match in a pre-trained dictionary, reconstructing high-

resolution details by combining these sparse components. This data-driven approach enables the system to fill in 

missing facial details with high fidelity, especially when the input quality is poor.  

 

3.2.1 Sparse Coding and Non-Negative Matrix Factorization 

 

Non-Matrix with Non-Negative Values in sparse coding, factorization is used to learn a distributed part-based 

description. This necessitates using a dictionary, and the enhancement is carried out using a localized part-based 

description. Study [23] is cited in the following description of sparse representation methodology. Non-negative 

matrix factorization (NMF) aims to extract related information about these relevant parts to obtain an additive 

composition of these image descriptors. The formulation of NMF is given below: 

    (1) 

 

 

 

 

 

 

 

arg min
𝑊,𝐻

‖𝐷 − 𝑊𝐻‖2
2 

𝑠. 𝑡. 𝑊 ≥ 0, 𝐻 ≥ 0, 
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Here, the data matrix is denoted by D ∈  ℜn×m, while W ∈ are ℜn×r as a numerator, the basis matrix, and H ∈  ℜr×m 

is called the coefficient matrix. The r bases is assumed as(n × m) (n + m)⁄ .  From the above equation, the up-data 

rules are set as below: 

 (2) 

 

 

 

 

 

 

It is also important to remember that the higher resolution (Ih) and low resolution (Il) are obtained from smoothing 

and down-sampling, respectively. The degradation process from largest to smallest resolution can be expressed as Il 

= MIh, where M is the matrix that handles both blurring and down-sampling. The optimal Ih based on the Maximum 

A-Posteriori criterion of reconstructing the Super-Resolution is as follows: 

 (3) 

 

The reformulation of the super-resolution problem  

can be found with (3) from the basis matrix W in (2).   

 (4) 

 

 

 

Here, the high-pass filtering is denoted by Γ, and the high resolution is estimated by Wc*. However, the high frequency 

components are suppressed by the prior term in equation (5), causing over-smoothness in the solution picture: 

 (5) 

 

 

 

Where Γ denotes the high-pass filtering, the high resolution here is approximated by 𝑊𝑐  ∗. Nonetheless, the prior 

term in equation (5) suppresses the high frequency components, resulting in over-smoothness in the solution image. 

Using an over-complete dictionary that includes all the prototype signals learned, the signals will be represented as 

sparse linear combinations. The low-res patch y is derived as below: 

 

 (6) 

 

The high-resolution patch is represented by x, and the low-resolution patch, is represented by y whereas 𝛼 is a nonzero 

entry vector of very few K signals and L ∈  𝑅𝑘×𝑛 is the vector length with 𝑘 ≤  𝑛. D is denoted as the over-complete 

dictionary that contains K the prototype signals. Also, x is defined as the high-res patch, i.e., representing image 

signals in a sparse linear combination. It is denoted as x = Dα 

By solving the optimization problem in equation (5), we can extract a smooth, high-resolution probe Y from the 

subspace spanned by W: 

 (7) 

 

 

Starting for each patch y of Y, 1 pixel is taken to overlap in each direction, starting from the upper-left corner. The 

optimization is then solved using the qualified dictionary D̃ and the patch ỹ, as shown in the following formula:  

 

(8)                                    (8) 

 

Here, the balancing parameter of the sparsity is η that is also the fidelity to the estimation of y. D ̃ and ỹ are detailed 

as D̃ =  [
FDl

βPDҔ
] and ỹ =  [

Fy
βw

]. F is gradient filter that is selected as a feature extraction operator. In contrast, P is a 

matrix that extracts the overlapped region between a target patch and a previously reconstructed high-res image. The 

tradeoff here is between matching low-res input with a detected high-res patch consistent with its neighbors and 

𝐻𝑖𝑗 ← 𝐻𝑖𝑗

(𝑊𝑇𝐷)𝑖𝑗

(𝑊𝑇𝑊𝐻)𝑖𝑗
 , 

𝑊𝑡𝑖 ← 𝑊𝑡𝑖

(𝐷𝐻𝑇)𝑡𝑖

(𝑊𝐻𝐻𝑇)𝑘𝑖
 , 

𝐼ℎ
∗  =  𝑎𝑟𝑔 max

𝐼ℎ

𝑝(𝐼𝑙|𝐼ℎ)𝑝(𝐼ℎ) , 

𝑐∗ =  𝑎𝑟𝑔 min
𝑐

‖𝑀𝑊𝑐 − 𝐼𝑙‖2
2 + 𝜆𝜌(𝑊𝑐) 

𝑠. 𝑡.  𝑐 ≥ 0, 

𝑐∗ =  𝑎𝑟𝑔 min
𝑐

‖𝑀𝑊𝑐 − 𝐼𝑙‖2
2 + 𝜆‖𝛤𝑊𝑐‖2 

𝑠. 𝑡.  𝑐 ≥ 0, 

𝑦 = 𝐿𝑥 = 𝐿𝐷𝛼,̇  

𝑌 = 𝑊𝑐∗ , 

𝑚𝑖𝑛 𝜂‖𝛼‖1 +  
1

2
‖�̃�𝛼 −  �̃�‖

2

2
 , 
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matching low-res input with a detected high-res patch compatible with its neighbors. Also, Dl and DҔ are the low-res 

and high-res training dictionary representations, respectively.  

 

Finally, patch x =  DҔα∗ generates the reconstruction of the high-res patch. In a high-resolution image of 𝑋, paste the 

patch x. The super-resolution of probe X* is the output.  The diagram that shows the process flow of the algorithm is 

given in Figure 4:  

 

 

Fig. 4: The  proposed process flow of the sparse representation super-resolution algorithm enhances the probe in 

video analysis. 

 
3.3 Feature Extraction using AAM Modeling 

 

The Active Appearance Model is a content-based approach that uses the locations of the eyes, the curve of the brows, 

the shape of the lips, the nose, and other facial features that can be found continuously across face images, as opposed 

to the comprehensive approach, which uses pixels intensities across the observed face region. The Active Appearance 

Model (AAM) is a broadening of the Active Shape Model (ASM) [24], [25] which uses all information in the probe 

image region rather than near modeled points or edges. ASM uses the Point Distribution Model (PDM), which is 

labeled on probe images, whereas AAM is more sensitive to changes in fiducial landmarks on probe images. AAM, 

unlike ASM, only uses shape constraints and investigates information about image structure near landmarks. Rather 

than updating the PDM through local point searches, which are then limited during the training phase by the PDM 

acting as a prior, the AAM model parameters are learned with respect to the appearance [24]. AAM is capable of 

modeling the fitting ones. AAM has the advantage of fitting the deformation of a 3D model from one view by using 

the 2.5D approach. 

 

A probe picture from a CCTV surveillance video exhibit includes random facial details. Depending on the relationship 

between camera position and individual facial pose and orientation, it may be in any pose and orientation (which 

makes finding a true full frontal difficult). The key variable is facial detail. A 2D solution is not the best choice since 

the probe face image must be similar to the qualified face in the enrollment, according to the thumb rule of face 

recognition; AAM comes in handy in this situation. The like form variety of the face and its associated fiducial 

landmark points can be matched by AAM simultaneously. AAM is useful in obtaining certain landmarks that can be 

used in the latter method to a particular extent for the deformation, pose, and orientation of the facial details within 

the probe images.  

 

In revising AAM, Cootes [24] clarified that the approach is based on statistical appearance models generated by 

combining a shape variation model. A face sample can be estimated by using the following expression.                                 

𝑥 =  𝑥 +  𝑃𝑠𝑏𝑠   (9) 
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Here, the mean shape (denoted as Procrustes mean) is �̅�. Also, 𝑃𝑠  is denoted as a series of modes in orthogonal 

variation, and 𝑏𝑠 is defined as a series of shape parameters. To remove variations in illumination, by employing a 

scale 𝛼, and an offset, 𝛽, the samples are normalized. 

𝑔 =  (𝑔𝑖𝑚 −  𝛽𝑙) 𝛼⁄  (10) 

 

Values of 𝛼 and 𝛽 are selected to correspond to the normalized mean of vectors. The mean of the normalized data is �̅�, 

which has been resized and offset such that the number of elements is zero and the variance of each element is one. 

Values of 𝛼 and 𝛽 are needed to standardize 𝑔𝑖𝑚which are presented as, 

𝛼 =  𝑔𝑖𝑚 . 𝑔, 𝛽 =  (𝑔𝑖𝑚 cot 𝑙) 𝐾⁄  (11) 

 

where K is the number of elements in the vectors. In order to obtain a linear model, Principal Component Analysis 

(PCA) is applied.   

𝑔 =  𝑔 +  𝑃𝑔𝑏𝑔 (12) 

 

Here, �̅� refers to the mean normalized gray-level vector, whereas, 𝑃𝑔 indicates a set of orthogonal modes of 

variation, and 𝑏𝑔 denotes to a set of gray-level parameters. Due to the possibility of interactions between gray-level 

and shape differences, a second PCA is performed. A generated concatenated vector is represented for each sample 

as 

𝑏 =  [
𝑊𝑠𝑏𝑠

𝑏𝑔
] =  [

𝑊𝑠𝑃𝑠
𝑇(𝑥 −  𝑥)

𝑃𝑠
𝑇(𝑔 −  𝑔)

] (13) 

 

Here, the unit's difference between the form and gray-level versions is explained by 𝑊𝑠, a diagonal matrix of weights 

for each shape parameter. The PCA application becomes, 

𝑏 =  𝑄𝑐 , (14) 

 

where Q is the set of eigenvectors and c is the vector of appearance parameters controlling both the shape and gray-

level of the model. The linear nature of vector c is then described as 

𝑥 =  𝑃𝑠𝑊𝑠𝑄𝑠𝑐, 𝑔 =  𝑔 + 𝑃𝑔𝑄𝑔𝑐,  (15) 

where,𝑄 =  [
𝑄𝑠

𝑄𝑔
] 

 

Figure 5 provides an example of face images with landmarks for which the model can generate a new estimation for 

new data that includes fiducial landmarks. Since Q is orthogonal, parameters of the combined appearance model, c, 

can be obtained by repeating the procedure as 

𝑐 =  𝑄𝑇𝑏 

 

Inverting the gray-level normalization, employing the required pose to the points, and projecting the gray-level vector 

to the image are used to completely recreate equation ( ). The distinction between a new picture and an appearance 

model that has been synthesized can be explained simply as model searching: 

𝛿 =  𝐼𝑖 − 𝐼𝑚 (16) 

 

Here, 𝐼𝑖  represents the new image's gray-level values vector, while 𝐼𝑚 represents the existing mode parameters' gray-

level values vector.  

.  

On aligning a set of shapes, the Procrustes mean (�̅�, �̅�) is calculated.  

�̅� =  
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ,       (17) 

�̅� =  
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 ,        (18) 

 



                         

 

11 

 

Here, the landmark coordinates are x, y. The Point Distribution Model of the Fiducial Landmarks is what we call it. 

Principal Component Analysis (PCA) is used to model the shapes since it reduces dimensionality by projecting a 

collection of multivariate samples into a subspace constrained to represent a certain amount of landmark differences 

in the original face samples [26]. In PCA's 2 nth dimensional space, a shape variation is called a data point. In fact, 

the PCA is done as an eigenanalysis of the aligned shapes' covariance matrix. 

 

Fig. 5: Landmark points tested on the UKM-CSM dataset. 

 
3.4 Face identification using Support Vector Machine 

 

SVM (support vector machine) [26] implements supervised learning, which is particularly necessary for regression 

and classification. The SVM classifier is a supervised learning algorithm based on statistical learning theory that uses 

training datasets to find a hyperplane that best separates two classes. Consider a training data set {xi, yi}i=1
n  , where x 

denotes the input vector, and the class label is denoted by y ∈ {+1, - 1}. This hyperplane is denoted as w. x + b = 0, 

where x is the point lying on the hyperplane, w defines the hyperplane orientation, and b is the distance bias of the 

hyperplane from the origin. As depicted in Figure 6, the optimum separating hyperplane is obtained by decreasing 

𝑘𝑤𝑘2 under the constraint 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … . . , 𝑛 . Therefore, finding the optimum hyperplane is needed 

to eliminate the problem of optimization provided by: 

min   
1

2
‖𝑤‖2 (19) 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … . . , 𝑛 

 

The positive slack variables ξ
i
,ξ

i

∗
 are proposed so that the optimization problem is replaced, and then the method 

is elaborated to allow for non-linear decision surfaces 

 
Fig. 6: The classification process of SVM 
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For nonlinear decision surfaces. The new optimization problem is given as: 

min
𝑤,𝜉

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑛

𝑖=1  (20) 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉, 𝜉 ≥ 0, 𝑖 = 1,2, … … , 𝑛. 
 

Here, 𝐶 is a penalty parameter or regularization constant that regulates the tradeoff between error minimization and 

margin maximization criteria. As a result, the classification decision feature is: 

𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏𝑛
𝑖=1 ). (21) 

 

Here, α
i
 is the Lagrange multiplier, K(xi, xj) = ∅(xi)∅(xj) denotes the kernel function, which can allocate the data 

into a higher-dimensional space through some nonlinear mapping functions ∅(x). Radial basis function (RBF) (defined 

as exp (−‖xi − xj‖/2σ
2

) , σ  r is a positive real number) is mostly utilized in the previous works for image 

classifications. Thus, in this research, RBF is utilized to construct SVM. 

 

3.5 The Evaluation Metrics 

The evaluation metrics used for analysis focus on the effect of probe quality after resizing enhancement on the forensic 

facial identification matching performance.  For the analysis, Sparse Representation SR is tested against other SR and 

resizing methods at magnification factors of x=2, x=4, x=8, and x=16 [27]. Each magnified probe will be used as a 

facial identification test analysis to observe the matching score performance at each magnification factor. At the same 

time, the Image Quality Assessment (IQA) [4] is conducted for each probes to measure the quality. Point Signal to 

Noise Ratio (or PSNR) and Structural Similarity Index Measurement (SSIM) are used for the measurement.  

 

PSNR is the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the 

fidelity of its representation. It can be defined via mean square error (MSE) – given a noise-free 𝑚 × 𝑛 image I and 

its noisy approximation K: 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0                                                                                                             (22) 

Therefore, PSNR can be derived as: 

𝑃𝑆𝑁𝑅 = 20. log10(𝑀𝐴𝑋𝐼) − 10. log10(𝑀𝑆𝐸)                                                                                                            (23) 

Here, the MAXI is the maximum possible pixel value of the image.  

SSIM, on the other hand, is a method for measuring the similarity between two images [4]. The SSIM is a full-

reference metric, meaning image quality is based on a distortion-free or noise-free image as a reference. The method 

is said to improve the PSNR method, which has proven inconsistent with human eye perception. The SSIM can be 

defined as: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑋
2 +𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                                                                                                                   (24) 

 

where, 𝜇𝑥 is the mean of x, 𝜇𝑦 is the mean of y. 𝜎𝑦
2 here is the variance of y and 𝜎𝑥

2  is x variance. Both c is the 

denominator are used to stabilize the division of two variables: 

𝑐1 =  (𝑘1𝐿)2, 𝑐2 =  (𝑘2𝐿)2                                                                                                                                 (25) 

 

L here is the dynamic range of the pixel values while k1 and k2 are set at 0.01 and 0.03, respectively.  

 

The image quality assessment is crucial in a biometric system, as the difference between enrollment and test sample 

quality should be minimal. The observation of biometric system performance in terms of image quality is described 

by [4]. In his work, he described the effect of lens blur on the face detection function, which is a critical part of the 

face recognition system in getting prior face data to process. The PSNR method measures the quality of the dataset 

being processed with various iterations of blur and other noises. The PSNR will calculate the ratio between the 

maximum possible powers of a signal and the power of corrupting noise that affects the fidelity of the image against 
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its source (or, in this case, the ground-truth). The latter method, SSIM analysis, details the PSNR finding by measuring 

how similar the two images are. The range for the result is between 0 and 1, where the range 0.7 to 0.99 is considered 

a very good result (as per CCTV video samples).  

 

4.  EXPERIMENTAL SETTINGS AND RESULTS 

This section details the rationale, standards, and procedures underlying the experimental settings, enhancement 

methods, facial image acquisition, and forensic identification results. All protocols were meticulously designed to 

emulate law enforcement surveillance conditions, aligning with international standards such as ISO/IEC 17025:2017 

[28] for forensics testing laboratories and ISO/IEC 27032:2012 [29] for digital evidence handling. Additionally, the 

experiment settings adhere to accreditation requirements set forth by the ANSI National Accreditation Board (ANAB), 

to ensure compliance with established forensic laboratory practices [28], [29]. For the data collection, the following 

guidelines were used: 

• ISO/IEC 19794-5:2011 – For the consistency of pose, lighting, and image capture biometric facial datasets [27]. 

• UK Homeland Security (2015/16 edition) – Provided the initial structure for law enforcement-aligned facial image 

testing (no longer in possession but mirrored in the 2023 NPL MS 43 report [30]). 

• NPL Report MS 43 (2023) – Used for methodological alignment and ethical framing in forensic facial recognition 

under operational environments [30]. 

Images were acquired using surveillance-simulated Digital Video Recorder (DVR) feeds at 1m and 3m distances, 

reflecting realistic CCTV capture conditions. In our experiments, we organized the datasets into two groups: (1) a 

population enrollment dataset comprising face images from 1490 images from more than a hundred individuals, 

including 14 volunteer subjects, and (2) a test dataset involving volunteer subjects (Figure 7) containing 3360 images 

(14 individuals x 30 images x 2 stations x 4 magnification). The enrollments are carried out via L1-Identix Gallery 

Manager. A cohort of 14 individuals was selected for the study, each contributing a set of controlled and unconstrained 

facial images. Though limited in number, this dataset aligns with practices in retrospective forensic evaluations where 

subject-specific analysis is emphasized over population-wide variance. We captured 30 images per individual 

spanning a spectrum of nine canonical poses: Frontal (0°), Turned left/right (±45°),  Tilted upward/downward (frontal, 

left, right) and Nodding downward (frontal, left, right).  This rich pose diversity was structured in accordance with 

ISO/IEC 19794-5:2011 [27], which outlines pose variation requirements for facial image interoperability and testing. 

The final collection exceeded 840 distinct facial images, sufficient for multi-pose enhancement and sparse 

representation analysis. The face images enrolled have gone through the same process as identification – eye detection, 

fiducial landmarks detection, and 2.5D face models. All trained features are then stored inside the biometric population 

database. The enrolment image was recorded using a high-resolution 720p CCTV camera at close range to simulate 

controlled acquisition conditions[29]. For the testing images, we captured them under two surveillance scenarios: 

Station 1 is at a distance of 1 meter, and Station 2 is at a distance of 3 meters from the camera.  

All face images—across both the population and test datasets—were processed using a 2.5D transformation pipeline, 

where the original 2D facial images were reconstructed into 3D representations, rotated into 12 distinct poses[28], 

[29], and then re-projected back into 2D formats. This yielded a synthetic 2.5D dataset designed to enhance pose 

robustness. Subsequently, the face recognition models were trained using the 1490-individual dataset and the 

enrollment images of the 14 test subjects, each tagged by a unique subject ID. We then evaluated the recognition 

performance using the testing images from Station 1 and Station 2 for all 14 subjects [30], [31]. The experimental 

results were recorded and analyzed to assess the system’s accuracy across varying distances and pose variations.  

Figure 7.(a) shows an example of a CCTV sample image, and a 2.5D image is shown in Figure 7.(b). The probes were 

cropped out from respective video frames for the first experiment. The video frame shows the suspect. This probe is 

then enhanced with the following techniques: 1) Bicubic, 2) interpolation SR, 3) POCS SR, 4) Robust SR, and 5) 

Sparse coding as shown Figure 8.  
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Fig. 7: The test dataset used for the experiments comprises 14 recipients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 
(b) 

Fig.7: (a) CCTV sample and (b) Sample of 2.5D partial image from UKM-CSM Dataset. 
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Our first observation can be extended here as the face hallucination results for each magnification factor are examined 

based on [27]. On the overall quality, we can see the deterioration of clarity from x2 to x4, respectively (Figure 8). As 

each tested method is examined, Sparse Representation produces the best clarity, especially at x=4 and x=8. At x=2, 

it can be concluded that any method can enhance features or objects via resizing. The selection for the best resizing 

method should be carefully considered, as Sparse Representation SR produces the best clarity. This is also to conclude 

that magnification above x=8 should not be considered for enhancement, as it is obvious from x=16 results, which all 

show low clarity. In general, through a visual qualitative study, the clarity of the face hallucination declines as the 

magnification factor increases. The same pattern is also observed from the SSIM and PSNR graph, which shows the 

declining quality and the similarities as the factor number increases. The comparison results for PSNR (dB) sparse 

coding versus super resolutions are shown in Figure 8 and Table 2. In addition, Table 2 and Figure 9 show the 

similarity percentage of sparse coding vs. Super-Resolutions. 

 

 

Fig. 8: Different qualities were observed on each magnification factor for the common resizing method against (f) 

Sparse Representation SR - (b) Nearest Neighbor, (c) Bicubic, (d) Bilinear, (e) Lanczos. (a) Here is the ground truth 

tested on the UKM-CSM Dataset. 

 

 

 
Table 2: PSNR and SSIM Sparse Coding Vs. Multiple-frame SR based on resizing methods. 

 
PNSR SSIM 

Magnification Sparse Interpolation POCS Robust SR Sparse Interpolation POCS Robust SR 

x2 29.728 21.731 
21.11

4 
22.673 95.331 89.708 

81.44

4 
83.584 

x4 22.494 16.157 
16.16

7 
18.585 74.417 55.395 

44.68

4 
55.015 

x8 18.287 13.989 9.338 16.599 41.041 30.284 8.002 26.439 

x16 16.820 12.150 6.987 15.530 29.766 16.577 1.308 16.493 
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Figure 9. (Left) PSNR (dB) and (Right) SSIM(%) Sparse Coding Vs. Super-Resolutions 

 

 

Fig. 10: (Left) PSNR (dB) and (Right) SSIM Sparse Representation Vs. Resizing Methods on x2, x4, x8, and x16 

magnification 

 

Fig. 11: Sparse Representation SSIM (by percentage) vs magnification factors 

 

In the second experiment, we down-sampled the UKM-CSM dataset to four times its original size. We then test the 

down-sampled data with 1) resizing with Nearest Neighbor, 2) Bicubic, 3) POCS SR, 4) Interpolation SR, and 5) 

Sparse coding. The PSNR is then computed on each result with the ground truth image. Figure 10 shows the PSNR(dB) 

sparse representation vs. resizing methods on x2, x4, x8, and x16 magnification, and Figure 11 shows the similarity 

index sparse representation vs. methods on x2, x4, x8, and x16 magnification.  
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Fig. 12: The 2.5D models of different resizing methods were generated at 2, 4, and 8 magnification factors. 

 

Next, we study the effect of resizing quality vs forensic facial identification matching score, as in Table 3. In this 

experiment, the results can be categorized into four categories: (1) the first rank, (2) the lower ranks, (3) the no-match, 

and lastly (4) the no facial features detected.  The first experiment is on the factor x=2 probe samples. Table 4 shows 

the facial identification matching scores on each probe’s face hallucination. As the knowledge has been established 

that the quality of the probe hallucination is good at x=2, the expectation for the matching score for each face 

hallucination result is also high. In this case, it can be concluded that any face hallucination method can be used, with 

the condition that the probe’s original resolution is big enough for the facial identification analysis.  The same pattern 

can be seen here in the factor x=4 dataset results. The match results of facial identification are all in the First Rank 

categories. The difference between this test set and the previous x=2 factor is that the lower matching scores can be 

observed. Furthermore, the PSNR and the SSIM have bigger gaps between the methods of face hallucination. 

 

On the last dataset of factor x=8 magnification, the poor face hallucination quality can be observed to a certain degree, 

which may drive the facial identification to failure.  At this rate, many face hallucinations are bound to have fallen to 

lower ranks, no-match, and no facial features detected categories. The matching scores for this dataset are also the 

lowest compared to the previous datasets. The only distinct pattern on this dataset is that the Sparse Representation 

SR shows the most first ranks, with a small number of results falling to lower ranks. Interestingly, despite the few 

differences in IQA measurements between Sparse Representation SR and others, the SR method has the most reliable 

identification results.  

 

The following are the PSNR and the SSIM measurements for each probe’s face hallucination samples. The gap 

between each method of face hallucination PSNR and SSIM is very small. This explains the little difference between 

the hallucinations and their respective ground truths.  Finally, the SSIM results by percentage for the Sparse coding 

vs magnification factors are illustrated in Figure 13.  The effect of the resizing quality on the 2.5D data of the forensics 

facial identification is demonstrated in the following figure. Figure 14 shows the 2.5D models formed by face 

hallucinations synthesized by Bicubic, Interpolation SR, POCS SR, and Sparse Representation SR.  
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Table 3: 2.5D Forensic facial identification matching scores using resizing methods for each recipient face hallucination results at magnification factor x=2,4,8 

  FACTOR 2 FACTOR 4 FACTOR 8 

No Probe Bicubic Bilinear 
Nearest 

Neighbor 

Interpolation 

SR 

POCS 

SR 

SPARSE 

SR 
Bicubic Bilinear 

Nearest 

Neighbor 

Interpolation 

SR 

POCS 

SR 

SPARSE 

SR 
Bicubic Bilinear 

Nearest 

Neighbor 

Interpolation 

SR 

POCS 

SR 

SPARSE 

SR 

1 S1 59 76 74 49 46 57 15 14 12 11 5.7 15 2.5 2.5 0 0 2.5 2.2 

2 S2 62 65 53 59 56 65 13 11 8.9 10 6.3 14 3 3 1.5 3.2 1.9 2.7 

3 S3 58 63 63 69 57 67 22 20 11 16 10 16 6.1 4.8 3.8 0 0 4.6 

4 S4 46 66 97 94 81 84 29 27 17 22 16 32 6.6 5.6 4 1.7 4.4 8.4 

5 S5 62 50 49 62 51 65 19 14 14 16 7.6 19 2.8 2.9 1.7 3.6 0 2.8 

6 S6 63 75 67 74 65 67 19 16 12 19 9.6 20 3.6 0 1.5 0 0 3.1 

7 S7 61 56 71 67 39 54 18 14 14 17 13 23 0 4.2 2.8 0 0 3.6 

8 S8 82 74 74 82 66 82 24 22 19 20 16 26 4.4 5.4 4.3 4.3 1.3 3.9 

9 S9 62 72 54 61 60 61 19 19 10 17 12 19 0 2.3 2 0 0 3.1 

10 S10 66 53 47 42 36 64 9.7 8.7 10 7.5 10 12 0 1.8 2.3 0 0 2.9 

11 S11 78 103 99 85 63 51 14 15 13 12 13 19 0 2.4 2.1 2.1 0 2.1 

12 S12 53 55 47 53 49 71 19 25 16 25 9.5 24 3.8 4.1 0 2.2 3.6 2.4 

13 S13 52 54 62 76 53 65 23 23 17 20 17 24 6.2 3.9 2.4 4.6 0 5.2 

14 S14 44 56 59 58 48 53 14 15 10 12 9.5 15 3.2 4.2 2.3 2.3 0 3 

                

Legend   First rank   
Lower 

rank 
  

No-

Match 
  No Facial features detected 
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                                                  (a)                                                                                   (b) 

 
(c) 

Fig. 13: The associated quality assessment of PSNR and SSIM for each 2.5D face hallucination tested on the UKM-

CSM dataset for facial identification experiment at (a) factor = 2, (b) factor=4, and (c) factor=8 (as presented in 

Table 4). 

 

Table 4 describes the experimental results, showcasing a comparison of different Super-Resolution methods, 

categorized into Deep Learning-based and Frequency-based approaches, evaluated using metrics like Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). Here is the summary: 
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Table 4: Comparison results based on Deep Learning and Frequency-Based Super-Resolution Methods. 

 

Approach Dataset PSNR (dB) SSIM 

Deep Learning Transformer [20] DIV2K and Urban100 33.2 0.94 

Probabilistic Model [21] DIV2K 32.8 0.93 

Recurrent Neural Network [17] Vimeo-90K and Vid4 Vid4 32.1 0.92 

Attention-based [18] Set5, Set14, and Urban100 31.8 0.91 

Deep CNN [22] Set5, Set14, and BSD100 31.35 0.91 

Wavelet-based [19] BSDS100, Set5, and Set14 30.9 0.9 

Supervised CNN [13] Set5, Set14, and T91 30.48 0.89 

Proposed Sparse Representation (2X) 2.5D UKM-CSM 29.728 0.95 

GAN-based [15] COCO, Set5 and Set14 29.4 0.87 

Unsupervised GAN [16] 
Unpaired datasets image-to-image 

translation 
28.9 0.85 

Proposed Sparse Representation (4X) 2.5D UKM-CSM 22.494 0.74 

 

The study compares baseline Super-Resolution methods, categorized into Deep Learning-based and Frequency-based 

approaches, using metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). 

Transformer Models achieved the highest PSNR and SSIM on DIV2K and Urban100 datasets. Probabilistic models 

showed slightly lower PSNR and SSIM, while Recurrent Neural Networks and Attention-Based Methods showed 

robust performance. GAN-based methods showed variable effectiveness, with unsupervised GAN lagging in quality 

metrics. Sparse representation (2X scaling) excelled in SSIM but struggled with lower PSNR values. Further insights 

into specific methods or datasets are sought. This drawback may be due to the nature of the dataset used by our 

proposed work, which was synthesized from 2D to 2.5D, unlike other researchers. [13] [15] [16] [20] used the original 

image.    

 

5.  DISCUSSION  

 

This paper aimed to recover and reconstruct facial information inside video evidence that is generally degraded with 

low resolution and low definition. The limitations of the camera cause these degradations in the recording and the 

surveillance system DVR (Digital Video Recorder), which stores the video evidence. This thesis has proved that 

Sparse Representation SR has solved many problems by enhancing the clarity of face hallucination. Furthermore, 

these face hallucinations improve the matching performance of forensic biometric analysis.  

 

We demonstrated that Sparse Representation excelled in both the experimental dataset and the reanalysis of a case, in 

which the Digital Forensics Department of CyberSecurity Malaysia faced many problems in analyzing the 

investigation. Sparse Representation lands a match on the right suspect for the case reanalysis. In comparison, applying 

the bicubic resizing method to the past case analysis failed to solve the problem, with no matching being observed in 

the analysis. The restoration of facial details on the samples recorded by a common CCTV system was demonstrated 

up to a scaling of 16. For the case reanalysis, the scale of 20 is used to repeat the parameters used for the case’s past 

analysis. In highlighting the achievements of the proposed algorithms, we have demonstrated experiments on a 

selection of probes’ face hallucination samples processed via Sparse Representation SR and other resizing and SR 

methods.   

 

5.1 Exploiting Face Image Models with Sparse Representation Method 

 

Section 4 demonstrated the parameters of the Sparse Representation SR algorithm as a single-image SR, based upon 

sparse signal representation in enhancing face hallucination quality. The face hallucination is synthesized via image 

patches representing a sparse linear combination of elements from an appropriately trained over-complete dictionary. 

For each patch of the low-resolution input, a high-resolution output is produced. The dictionary, which is built from 

several high-quality image inputs, is then divided into two sets of patches – the low patches and the high patches. Via 
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the dictionary, a low-res face image input is synthesized to a higher resolution based on the scaling parameters set for 

the application. The result is a sharper and clearer face hallucination.  

   

5.2 Sparse Representation SR Has Better Results In IQA Analysis 

Sparse SR has better results than other resizing methods. To investigate this, datasets of 14 recipients are down-

sampled to scale ½, ¼, 1/8 and 1/16. The down-sampled samples are then returned to their original size with Sparse 

Representation SR and several other resizing methods. Each result is compared to its respective ground truth via PSNR 

and SSIM.  

 

Sparse Representation SR produced face hallucination with more detailed face edge information. Other resizing 

methods, including SR methods, produced edge information with blurred details. A certain resizing method, for 

instance, Bilinear, produced detailed edge information but with pixelated features.   

  

5.3 Sparse Representation SR Improves The Forensics Facial Identification Analysis Matching Scores 

 

We also demonstrated that the Sparse Representation SR is the method that best matches results at all scaling 

factors. The most significant result is at a scaling factor of 8, where Sparse Representation SR is the only method 

with high First Ranks numbers. The results also show a low number of the Lower Ranks category, with no No-

Match and No-facial features detected categories. To conclude, Sparse Representation SR proves to have improved 

the forensic matching performance significantly compared to other methods.  

 

5.4 Sparse Representation SR Has Solved The Analysis Problem Faced In A Law Enforcement Agency (LEA) 

Case 

 

The reanalysis of the case exhibit shows a matching outcome that previous case analysis deemed failed. The suspect’s 

probe in the video evidence, enhanced with Sparse Representation SR, shows the right match with the highest 

matching scores. This demonstrates the impact of the resizing method selection on forensic analysis. Section 4 

discusses the criticality of the resizing method selection to the analysis. Plus, the scaling factor selection is also a 

critical factor in deciding the quality outcome of the face hallucination for the use of forensic facial identification 

analysis. Depending on the quality state of the video evidence and also the face resolution of the probe, the scaling 

factor may decide the quality of the face hallucination and thus the forensic facial identification result. From the 

experiment, the best scale factor is limited to x8 magnification. Further than this number, the quality of the face 

hallucination is found to be in a very poor state. At this stage, the forensic facial identification system failed to detect 

any facial features that are crucial for face model reconstruction. Sparse Representation SR is concluded to be a very 

suitable method for video evidence enhancement via observed performance that: 

i. The method produced the highest identification scores 

ii. The method has a low number of other possible matches, and; 

iii. The method eliminates possible False Non-Match Rates (FNMR).  

  

5.5 The Impact Of The Research On Video Evidence Quality Awareness 

 

We discussed the importance of CCTV quality for being used as evidence. Poor quality of video evidence, especially 

from CCTV surveillance, has caused many problems for LEA investigations. The low quality factors of video evidence 

may destroy important information that can be proof of the crime under investigation. Furthermore, the negative results 

of the forensics enhancement analysis on the evidence may cause bad logs for the investigation. The discussion also 

raised an awareness of the importance of CCTV installation and the application standard to be set up. The standard 

will ensure that the video acquired from the CCTV system is of a quality sufficient to be analyzed and brought to court 

as evidence. Apart from that, the standard will ensure the CCTV system can be used as a reliable tool to produce 

quality video for maintaining public safety.    
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5.6 Limitations  

 

There are several limitations observed in the Sparse Representation SR method on enhancing video evidence for 

forensic facial identification analysis. In order to explain the limitation, firstly, the term face hallucination should be 

understood. Face Hallucination is a learning-based approach to Super-Resolution. The method is diffusing scenes or 

objects' features with a certain quality quotient that survives the degradation effects of camera blurs and other noise 

quantization. The SR method uses this information to constrain the spatiality of high-resolution solutions. Since blur 

destroys information, low-resolution observation is becoming more and more ambiguous. This is an issue; if an image 

is blurred beyond the point of leaving no discriminative information inside it, deducing the underlying state of the 

scene and reconstructing it is impossible. In order to solve the problems, a multiple-image SR is proposed. Multiple-

image SR is proposed to accommodate the required information from various quotients, which can be accessed from 

various photos or video frames. The biggest problem with this is that it requires an image registration function to 

predict and correct the invariant objects’ position and orientation in a scene. In a video case, it is impossible as a living 

object keeps on moving. Therefore, the problem of object resolution arises due to the changing distance of moving 

objects from the camera.  

 

Sparse Representation, on the other hand, solves the problems with the discussed algorithms in Section 3. The major 

problem the researchers observed in the algorithm is the blur product used for smoothing edge information. In addition 

to the camera’s lens blur and noise product, the problems thicken. The problems might be solved if certain knowledge 

of blind deconvolution can be explored for solutions. The solution should explore of possible synthetic patterns of 

Point Spread Functions (PSF) to reverse the degrading quality perceived in the Sparse Representation.  

 

For future works, the research will look into several fields to ensure the methodology can solve problems faced in the 

current video forensics practices. For Sparse Representation SR, the research tries to solve the blurred product of the 

Sparse Representation SR and from the scene by synthesizing a PSF for blind deconvolution. By combining blind 

deconvolution with Super-Resolution, the research expects that it can solve many problems with video surveillance 

quality issues. Furthermore, the study explores the Power GPU (Graphics Processing Unit) in enhancing the algorithm 

performance.  

 

For the forensics facial identification research, future research focuses on developing Windows Kinect technology for 

a 2D+3D forensic facial identification system. The research is divided into three parts: 1) The 3D reconstruction of 

face models, 2) The Kinect enrollment studio, 3) The 2.5D face features extraction and recognition, 4) CCTV 

framework and guidelines development for quality video evidence, and 5) forensic biometrics results presentation 

based on likelihood ratio computation approach.   

 

This study is limited only to images, but nowadays, studies [32] have shown that applying deep learning with long 

short-term memory [33], attention mechanisms [34], objective functions [35], [36], and vision transformers [32] for 

image or video generation has become favorable among artists, non-artists, or novices. Massive real images to 

reconstruct the new super-resolution image using Generative AI approaches [32], [34] Later, the research continued 

to empower LLM and Deepseek, plus man-made manipulation of images or video [25] has become a hot research 

topic nowadays. Despite AI-powered attacks, they still rely on human interrogation, such as prompt engineering skills, 

making the machine more intelligent by feeding overwhelming images or videos to increase their similarity compared 

to the real image. The choice and improvement of the loss function [33], [34] and objective functions [35], [36]In 

machine learning, it is also another interesting topic that can accelerate the black box to overcome overfitting, data 

imbalance, and bias, and reduce errors throughout image or video generation learning. 

 
6.  CONCLUSIONS 

 

The study compares Super-Resolution methods using metrics like PSNR and SSIM. Transformer Models outperform 

probabilistic models, while Recurrent Neural Networks and Attention-Based Methods show consistent results. GAN-

based methods show variable effectiveness, and sparse representation techniques excel in SSIM but have lower PSNR 

values. The study compares Super-Resolution methods using metrics like PSNR and SSIM. Transformer Models 

outperform probabilistic models, while Recurrent Neural Networks and Attention-Based Methods show consistent 
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results. GAN-based methods show variable effectiveness, and sparse representation techniques excel in SSIM but 

have lower PSNR values. This paper also proposes a face identification technique based on the sparse coding method 

to resize video frames for video forensics analysis. The method is capable of synthesizing a high-quality hi-res image. 

The results of the experiments favored the sparse coding method regarding scenery information clarity and the 

sharpness of the image. Finally, we obtained that sparse coding is suitable for enhancement analysis in video forensics, 

as the method can better enhance surveillance video exhibits. Furthermore, the recognition results showed that the 

proposed face identification technique is suitable for video forensic analysis to verify the evidence. For future research, 

we are moving to further solve the blurring in the sparse coding sampling. Furthermore, we will explore the possibility 

of sparse coding to denoise surveillance video apart from resizing. In conclusion, the findings underscore the superior 

performance of Transformer Models in Super-Resolution tasks while highlighting the influence of dataset 

characteristics on method effectiveness. This suggests future research needs to explore more diverse datasets and 

refine methodologies for improved generalizability and accuracy. 
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